If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Reporting and Revision of Term 1 Premock |
|||||||
2 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Bond Energies
|
By the end of the
lesson, the learner
should be able to: calculate enthalpy changes using bond energies.
|
Calculations
|
Calculators ,bond energy charts
|
Klb bk 4 pg 38-39
|
|
2 | 2-3 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of given substances. |
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water.
Determine temperature changes. Calculate molar heat of solution. Supervised practice. |
Ammonia nitrate / sodium hydroxide, thermometers.
|
K.L.B. BK IV
Pages 40-41 |
|
2 | 4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of H2SO4.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of H2SO4. |
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature. Work out the molar heat of solution of H2SO4. |
Conc. H2SO4, thermometers.
|
K.L.B. BK IV
Pages 42-45 |
|
2 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of H2SO4.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of H2SO4. |
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature. Work out the molar heat of solution of H2SO4. |
Conc. H2SO4, thermometers.
|
K.L.B. BK IV
Pages 42-45 |
|
3 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy of combustion.
Enthalpy of combustion.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy of combustion. Determine the enthalpy of combustion of ethanol. Explain why actual heats of combustion are usually lower than the theoretical values. |
Group experiments / teacher demonstration.
Obtain and record results. Work out calculations. |
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
|
K.L.B. BK IV
Pages 45-48 |
|
3 | 2-3 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy of combustion.
Enthalpy of combustion.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy of combustion. Determine the enthalpy of combustion of ethanol. Explain why actual heats of combustion are usually lower than the theoretical values. |
Group experiments / teacher demonstration.
Obtain and record results. Work out calculations. |
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
|
K.L.B. BK IV
Pages 45-48 |
|
3 | 4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of displacement of ions.
|
By the end of the
lesson, the learner
should be able to:
Define the term molar heat of solution of displacement of ions. Determine the molar heat of solution of displacement of ions. |
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution. Work out the molar heat of displacement of a substance from a solution of its ions. |
Zinc, iron, magnesium, copper sulphate solution.
|
K.L.B. BK IV
Pages 48-50 |
|
3 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of displacement of ions.
|
By the end of the
lesson, the learner
should be able to:
Define the term molar heat of solution of displacement of ions. Determine the molar heat of solution of displacement of ions. |
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution. Work out the molar heat of displacement of a substance from a solution of its ions. |
Zinc, iron, magnesium, copper sulphate solution.
|
K.L.B. BK IV
Pages 48-50 |
|
4 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of neutralization.
|
By the end of the
lesson, the learner
should be able to:
Define the term neutralization. Determine the molar heat of neutralization of HCl with NaOH. |
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide. Note highest temperature of the solution. Work out the molar heat of neutralization. Solve other related problems. Assignment. |
2M HCl of known volume, 1M / 2M sodium hydroxide.
|
K.L.B. BK IV
Pages 50-53 |
|
4 | 2-3 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of neutralization.
Standard enthalpy changes. |
By the end of the
lesson, the learner
should be able to:
Define the term neutralization. Determine the molar heat of neutralization of HCl with NaOH. Define the term standard enthalpy change. Denote standard enthalpy change with the correct notation. |
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide. Note highest temperature of the solution. Work out the molar heat of neutralization. Solve other related problems. Assignment. Exposition & brief discussion. |
2M HCl of known volume, 1M / 2M sodium hydroxide.
student book |
K.L.B. BK IV
Pages 50-53 K.L.B. BK IV Pages 54-56 |
|
4 | 4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Hess?s Law.
|
By the end of the
lesson, the learner
should be able to:
State Hess?s law. Solve problems related to Hess?s law. |
Detailed discussion & guided discovery of the law.
Illustrations of energy cycles and energy levels leading to Hess?s law. Worked examples. Supervised practice Written assignment. |
student book
|
K.L.B. BK IV
Pages 56-57 |
|
4 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Hess?s Law.
|
By the end of the
lesson, the learner
should be able to:
State Hess?s law. Solve problems related to Hess?s law. |
Detailed discussion & guided discovery of the law.
Illustrations of energy cycles and energy levels leading to Hess?s law. Worked examples. Supervised practice Written assignment. |
student book
|
K.L.B. BK IV
Pages 56-57 |
|
5 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat of solution hydration energy and lattice energy.
|
By the end of the
lesson, the learner
should be able to:
Define the terms lattice energy and hydration energy. Explain the relationship between heat of solution, hydration energy. Solve related problems. |
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy. Worked examples. Assignment. |
student book
|
K.L.B. BK IV
Pages 60-64 |
|
5 | 2-3 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat of solution hydration energy and lattice energy.
|
By the end of the
lesson, the learner
should be able to:
Define the terms lattice energy and hydration energy. Explain the relationship between heat of solution, hydration energy. Solve related problems. |
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy. Worked examples. Assignment. |
student book
|
K.L.B. BK IV
Pages 60-64 |
|
5 | 4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat values of fuels.
|
By the end of the
lesson, the learner
should be able to:
Define the term fuel. Describe energy changes when a fuel undergoes combustion. Outline factors considered when choosing a suitable fuel. |
Probing questions and brief discussion.
|
student book
|
K.L.B. BK IV
Pages 64-66 |
|
5 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Environmental effects of fuels.
|
By the end of the
lesson, the learner
should be able to:
Outline some environmental effects of fuels. Identify measures taken to reduce environmental pollution. |
Q/A & open discussion.
|
student book
|
K.L.B. BK IV
Pages 67-68 |
|
6 |
C.A.T |
|||||||
6 | 4 |
ELECTRO-CHEMISTRY.
|
Redox reactions.
|
By the end of the
lesson, the learner
should be able to:
Describe redox reactions in terms of gain / loss of electrons. Identify oxidizing / reducing agents involved in redox reactions. |
Q/A: review cations, anions and charges. Write down ionic half equations and identify reducing / oxidizing agents. |
student book
|
K.L.B. BK IV
Pages 108-9 |
|
6 | 5 |
ELECTRO-CHEMISTRY.
|
Oxidizing Numbers.
|
By the end of the
lesson, the learner
should be able to:
Outline rules of assigning oxidation numbers. Determine the oxidation numbers of an element in a given compound. Explain the use of oxidation numbers in naming compounds. |
Exposition and giving specific examples.
Work out oxidizing number of elements in given compounds. Copy and complete a table of compounds containing elements that more than one oxidation number. |
student book
|
K.L.B. BK IV
Pages 109-116 |
|
7 | 1 |
ELECTRO-CHEMISTRY.
|
Displacement reactions.
|
By the end of the
lesson, the learner
should be able to:
Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power. |
Class standard experiments: reacting metals with solutions containing metal ions.
Taking note of reactions and those that do not take place; and tabulating the results. |
Metals: Ca, Na, Zn, Fe, Pb, and Cu.
Solutions containing Ca2+, Mg2+, Zn2+, Fe2+. |
K.L.B. BK IV
Pages 116-120 |
|
7 | 2-3 |
ELECTRO-CHEMISTRY.
|
Displacement reactions.
The oxidizing power of an element. |
By the end of the
lesson, the learner
should be able to:
Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power. Arrange elements in order of their oxidizing power. |
Class standard experiments: reacting metals with solutions containing metal ions.
Taking note of reactions and those that do not take place; and tabulating the results. Teacher demonstration / group expts: Adding halogens to solutions containing halide ions. Tabulate the results. Discuss the results and arrive at the oxidizing power series of halogens. |
Metals: Ca, Na, Zn, Fe, Pb, and Cu.
Solutions containing Ca2+, Mg2+, Zn2+, Fe2+. Halogens: Cl2 (g), Br2 (l), I2 (s). Halides: KCl, KBr, KI. |
K.L.B. BK IV
Pages 116-120 K.L.B. BK IV Pages 120-122 |
|
7-8 |
Midterm break |
|||||||
8 | 5 |
ELECTRO-CHEMISTRY.
|
Cell diagrams.
|
By the end of the
lesson, the learner
should be able to:
Define the terms electrode, potential and e.m.f. of an electrochemical cell. Describe components of a cell diagram. Draw cell diagrams using correct notations. |
Teacher demonstration: Zinc/ copper cell.
Q/A & discussion: changes in oxidation numbers. Exposition: cell diagram and deducing the direction of electron flow. |
Zinc/ copper cell.
|
K.L.B. BK IV
Pages 123-128 |
|
9 | 1 |
ELECTRO-CHEMISTRY.
|
Standard Electrode Potentials.
|
By the end of the
lesson, the learner
should be able to:
Identify standard conditions for measuring electrode potentials. Define the term standard electrode potential of a cell. Write half reactions of electrochemical cells. |
Descriptive and expository approaches: teacher exposes new concepts.
|
student book
|
K.L.B. BK IV
Pages 129-131 |
|
9 | 2-3 |
ELECTRO-CHEMISTRY.
|
Standard electrode potential series.
|
By the end of the
lesson, the learner
should be able to:
Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. |
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. |
student book
|
K.L.B. BK IV
Pages 131-133 |
|
9 | 4 |
ELECTRO-CHEMISTRY.
|
Standard electrode potential series.
|
By the end of the
lesson, the learner
should be able to:
Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. |
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. |
student book
|
K.L.B. BK IV
Pages 131-133 |
|
9 | 5 |
ELECTRO-CHEMISTRY.
|
Emf of a cell.
|
By the end of the
lesson, the learner
should be able to:
Calculate emf of a cell using standard electrodes potentials. |
Q/A: review half-cells.
Worked examples; supervised practice. Assignment. |
student book
|
K.L.B. BK IV
Pages 133-136 |
|
10 | 1 |
ELECTRO-CHEMISTRY.
|
Possibility of a reaction to take place.
|
By the end of the
lesson, the learner
should be able to:
Predict whether a reaction will take place or not using standard electrode potentials. |
Worked examples.
Oral exercise. Assignment. |
student book
|
K.L.B. BK IV
Pages 136-137 |
|
10 | 2-3 |
ELECTRO-CHEMISTRY.
|
Primary and secondary chemical cells.
Electrolysis of dilute NaCl. |
By the end of the
lesson, the learner
should be able to:
Describe the functioning of primary and secondary chemical cells. Define the term electrolysis. Explain the concept of preferential discharge of ions. |
Exposition of new concepts and brief discussion
Assignment. Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes. Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. |
student book
Dilute sodium chloride voltameter. |
K.L.B. BK IV
Pages 138-141 K.L.B. BK IV Pages 141-144 |
|
10 | 4 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute NaCl.
|
By the end of the
lesson, the learner
should be able to:
Define the term electrolysis. Explain the concept of preferential discharge of ions. |
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. |
Dilute sodium chloride voltameter.
|
K.L.B. BK IV
Pages 141-144 |
|
10 | 5 |
ELECTRO-CHEMISTRY.
|
Electrolysis of brine.
|
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of brine. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Brine voltameter.
|
K.L.B. BK IV
Pages 144-146 |
|
11 | 1 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute sulphuric (VI) acid.
|
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Sulphuric acid voltameter.
|
K.L.B. BK IV
Pages 146-148 |
|
11 | 2-3 |
ELECTRO-CHEMISTRY.
|
Factors affecting electrolysis.
Application of electrolysis. |
By the end of the
lesson, the learner
should be able to:
Explain factors that affect electrolytic products discharged at electrodes. Describe some applications of electrolysis. |
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes. Discussion: other factors; giving suitable examples. Probing questions and brief discussion on applications of electrolysis. Practical assignment on electrolysis: electroplating an iron nail with a suitable metal. |
student book
Suitable voltameter. |
K.L.B. BK IV
Pages 153-5 K.L.B. BK IV Pages 155-7 |
|
11 | 4 |
ELECTRO-CHEMISTRY.
|
Faraday?s law of electrolysis.
|
By the end of the
lesson, the learner
should be able to:
State Faraday?s law of electrolysis. Solve problems related to Faraday?s law of electrolysis. |
Discuss above results, leading to Faraday?s law of electrolysis.
Worked examples. Assignment. |
Weighing balance, stop watch, copper sulphate voltameter.
|
K.L.B. BK IV
Pages 161-4 |
|
11 | 5 |
ELECTRO-CHEMISTRY.
|
Faraday?s law of electrolysis.
|
By the end of the
lesson, the learner
should be able to:
State Faraday?s law of electrolysis. Solve problems related to Faraday?s law of electrolysis. |
Discuss above results, leading to Faraday?s law of electrolysis.
Worked examples. Assignment. |
Weighing balance, stop watch, copper sulphate voltameter.
|
K.L.B. BK IV
Pages 161-4 |
|
12 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Alkanols (Alcohols).
|
By the end of the
lesson, the learner
should be able to:
Identify the functional group of alkanols. Explain formation of alkanol molecules. |
Q/A: review alkanes, alkenes and alkynes. Teacher exposes new concepts and links them with already known concepts. |
student book
|
K.L.B. BK IV
Page 205 |
|
12 | 2-3 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Nomenclature of alkanols.
Isomerism in alkanols. |
By the end of the
lesson, the learner
should be able to:
Name and draw the structure of simple alkanols. Describe positional and chain isomerism in alkanols. Explain formation of primary and secondary alkanols. |
Guided discovery of naming system for alkanols.
Draw and name structures of alkanols. Q/A: review the terms positional and chain isomerism. Brief discussion on isomerism. Oral exercise: naming given organic compounds. Written exercise: writing structural formulae for isomers of organic compounds of a given molecular formula. |
student book
|
K.L.B. BK IV
Pages 206-8 K.L.B. BK IV Pages 208-10 |
|
12 | 4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Preparation of ethanol in the lab.
|
By the end of the
lesson, the learner
should be able to:
Describe preparation of ethanol in the laboratory. |
Group experiments / teacher demonstration.
Discuss the fermentation process. |
Calcium hydroxide solution, sugar solution, yeast.
|
K.L.B. BK IV
Pages 210-11 |
|
12 | 4-5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Preparation of ethanol in the lab.
|
By the end of the
lesson, the learner
should be able to:
Describe preparation of ethanol in the laboratory. |
Group experiments / teacher demonstration.
Discuss the fermentation process. |
Calcium hydroxide solution, sugar solution, yeast.
|
K.L.B. BK IV
Pages 210-11 |
|
13-14 |
Mock , marking and closing. |
Your Name Comes Here