If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Atomic and mass numbers.
|
By the end of the
lesson, the learner
should be able to:
Name the subatomic particles in an atom. Define atomic number and mass number of an atom. Represent atomic and mass numbers symbolically. |
Exposition on new concepts;
Probing questions; Brief discussion. |
text book
|
K.L.B.
BOOK II PP. 1-3 |
|
2 | 2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
First twenty elements of the periodic table.
Isotopes. |
By the end of the
lesson, the learner
should be able to:
List the first twenty elements of the periodic table. Write chemical symbols of the first twenty elements of the periodic table. Define isotopes. Give examples of isotopes. |
Expository approach: referring to the periodic table, teacher exposes the first twenty elements.
Writing down a list of first twenty elements of the periodic table. Exposition of definition and examples of isotopes. Giving examples of isotopes. |
Periodic table.
Periodic table. |
K.L.B.
BOOK II PP. 1-3 K.L.B. BOOK II P. 4 PP. 5-8 |
|
2 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration.
|
By the end of the
lesson, the learner
should be able to:
Represent isotopes symbolically. Define an energy level. Describe electronic configuration in an atom. |
Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise. |
Periodic table.
|
K.L.B.
BOOK II P. 4 PP. 5-9 |
|
2 | 5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration in diagrams.
|
By the end of the
lesson, the learner
should be able to:
Represent electronic configuration diagrammatically. |
Supervised practice;
Written exercise. |
text book
|
K.L.B.
BOOK II PP. 5-8 |
|
3 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Periods of the periodic table.
|
By the end of the
lesson, the learner
should be able to:
Identify elements of the same period. |
Exposition ? Definition of a period.
Q/A: Examples of elements of the same period. |
Periodic table.
|
K.L.B. BOOK IIP. 9
|
|
3 | 2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Groups of the periodic table.
R.M.M. and isotopes. |
By the end of the
lesson, the learner
should be able to:
Identify elements of the same period. Calculate R.M.M. from isotopic composition. |
Exposition ? definition of a group.
Q/A: examples of elements of the same group. Supervised practice involving calculation of RMM from isotopic composition. |
Periodic table.
text book |
K.L.B. BOOK IIP. 9
K.L.B. BOOK IIPP. 11-13 |
|
3 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Positive ions and ion formation.
Positive ions representation. |
By the end of the
lesson, the learner
should be able to:
To define an ion and a cation. |
Teacher gives examples of stable atoms.
Guided discovery that metals need to lose one, two or three electrons to attain stability. Examples of positive ions. |
text book
Chart ion model. |
K.L.B. BOOK IIPP 14-15
|
|
3 | 5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Negative ions and ion formation.
|
By the end of the
lesson, the learner
should be able to:
To define an anion. To describe formation of negative ions symbolically. |
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions. Diagrammatic representation of anions. |
Chart ion model.
|
K.L.B. BOOK IIP 17
|
|
4 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencies of metals.
|
By the end of the
lesson, the learner
should be able to:
Recall valencies of metals among the first twenty elements in the periodic table. |
Q/A to review previous lesson;
Exposition; Guided discovery. |
Periodic table.
|
K.L.B. BOOK IIP 17
|
|
4 | 2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencie of non-metals.
Valencies of radicals. |
By the end of the
lesson, the learner
should be able to:
Recall valencies of non-metals among the first twenty elements in the periodic table. Define a radical. Recall the valencies of common radicals. |
Q/A to review previous lesson;
Exposition; Guided discovery. Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies. Students draw a table of radicals and their valencies. |
Periodic table.
text book |
K.L.B. BOOK IIP 17
K.L.B. BOOK IIP 18 |
|
4 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Oxidation number.
|
By the end of the
lesson, the learner
should be able to:
Define oxidation number. Predict oxidation numbers from position of elements in the periodic table. |
Q/A: Valencies.
Expose oxidation numbers of common ions. Students complete a table of ions and their oxidation numbers. |
The periodic table.
|
K.L.B. BOOK IIvP 18
|
|
4 | 5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration, ion formed, valency and oxidation number
|
By the end of the
lesson, the learner
should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements. |
Written exercise;
Exercise review. |
text book
|
K.L.B. BOOK IIP 18
|
|
5 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
- Elements of equal valencies.
|
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of equal valencies. |
Discuss formation of compounds such as NaCl, MgO.
|
text book
|
K.L.B. BOOK IIPP 19-20
|
|
5 | 2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
-Elements of unequal valencies.
Chemical formulae of compounds. -Elements of variable valencies. |
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of unequal valencies. To derive the formulae of some compounds involving elements of variable valencies. |
Discuss formation of compounds such as MgCl2
Al (NO3)3 Discuss formation of compounds such as -Copper (I) Oxide. -Copper (II) Oxide. -Iron (II) Sulphate. -Iron (III) Sulphate. |
text book
|
K.L.B. BOOK IIPP 19-20
K.L.B. BOOK IIP 20 |
|
5 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical equations.
|
By the end of the
lesson, the learner
should be able to:
To identify components of chemical equations. |
Review word equations;
Exposition of new concepts with probing questions; Brief discussion. |
text book
|
K.L.B. BOOK IIPP 21-23
|
|
5 | 5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Exposition;
Supervised practice. |
text book
|
K.L.B. BOOK IIPP 24-25
|
|
6 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.(contd)
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Supervised practice;
Written exercise. |
text book
|
K.L.B. BOOK IIPP 25-8
|
|
6 | 2-3 |
CHEMICAL FAMILIES
|
Alkali metals.
Atomic and ionic radii of alkali metals
Ionisation energy of alkali metals. |
By the end of the
lesson, the learner
should be able to:
Identify alkali metals. State changes in atomic and ionic radii of alkali metals. State changes in number of energy levels and ionisation energy of alkali metals. |
Q/A to reviews elements of group I and their electronic configuration. Examine a table of elements, their symbols and atomic & ionic radii. Discussion & making deductions from the table. Examine a table of elements, number of energy levels and their ionization energy. Discuss the trend deduced from the table. |
The periodic
text book |
K.L.B. BOOK IIPP 28-29
|
|
6 | 4 |
CHEMICAL FAMILIES
|
Physical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkali metals. |
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion on physical properties of alkali metals. |
Chart ? comparative properties of Li, Na, K.
|
K.L.B. BOOK IIPP 30-31
|
|
6 | 5 |
CHEMICAL FAMILIES
|
Chemical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkali metals with water. |
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
text book
|
K.L.B. BOOK IIP. 32
|
|
7 | 1 |
CHEMICAL FAMILIES
|
Reaction of alkali metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas. |
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. |
Sodium, chlorine.
|
K.L.B. BOOK IIP. 33
|
|
7 | 2-3 |
CHEMICAL FAMILIES
|
Compounds of alkali metals.
Uses of alkali metals. Alkaline Earth metals Atomic and ionic radii of alkaline earth metals. |
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkali metals. Explain formation of hydroxides, oxides and chlorides of alkali metals. State uses of alkali metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions. Descriptive approach: Teacher elucidates uses of alkali metals. |
text book
text book Some alkaline earth metals. |
K.L.B. BOOK II pp 33
K.L.B. BOOK II pp 34 |
|
7 | 4 |
CHEMICAL FAMILIES
|
Physical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkaline earth metals. |
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion of physical properties of alkaline earth metals. |
Some alkaline earth metals.
|
K.L.B. BOOK II P. 35
|
|
7 | 5 |
CHEMICAL FAMILIES
|
Electrical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
To describe electrical properties of alkaline earth metals. |
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge. |
Alkaline earth metals.
|
K.L.B. BOOK IIP. 37
|
|
8 | 1 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with oxygen.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with oxygen |
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher. |
text book
|
K.L.B. BOOK IIP. 38
|
|
8 | 2-3 |
CHEMICAL FAMILIES
|
Chemical properties of alkaline earth metals.
Reaction of alkaline earth metals with water.
Reaction of alkaline earth metals with chlorine gas. |
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkaline earth metals with water. To write balanced equations for reaction of alkaline earth metals with chlorine gas. |
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. Teacher demonstration- Reaction of sodium with chlorine in a fume chamber. Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Supervised practice. |
Some alkaline earth metals.
Sodium, chlorine. |
K.L.B. BOOK IIP. 39
K.L.B. BOOK II P. 41 |
|
8 | 4 |
CHEMICAL FAMILIES
|
Reaction of alkaline earth metals with dilute acids.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids. |
Changing word to chemical equations.
Supervised practice. |
revision book
|
K.L.B. BOOK II PP. 43
|
|
8 | 5 |
CHEMICAL FAMILIES
|
Chemical formulae of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkaline earth metals. Explain formation of hydroxides, oxides and chlorides of alkaline earth metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions. |
text book
|
K.L.B. BOOK II PP. 45-47
|
|
9 | 1 |
CHEMICAL FAMILIES
|
Uses of some alkaline earth metals and their compounds.
Halogens. Physical properties of halogens. |
By the end of the
lesson, the learner
should be able to:
State uses of alkaline earth metals. |
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
|
text book
Iodine crystals, electrical wire, a bulb. |
K.L.B. BOOK II PP. 45-47
|
|
9 | 2-3 |
CHEMICAL FAMILIES
|
Comparative physical properties of halogens.
Chemical properties of halogens. Equations of reaction of halogens with metals. |
By the end of the
lesson, the learner
should be able to:
To state and explain the trends in physical properties of halogens. To write balanced chemical equations of reactions involving halogens. |
Examine a comparative table of physical properties of halogens.
Discuss the deductions made from the table. Re-write word equations as chemical equations then balance them. Supervised practice. |
text book
Chlorine, iron wool, bromine. |
K.L.B. BOOK II P. 47
K.L.B. BOOK II P. 50 |
|
9 | 4 |
CHEMICAL FAMILIES
|
Reaction of halogens with water.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of halogens with water and the results obtained. |
Bubbling chlorine gas through water.
Carry out litmus test for the water. Explain the observations. |
Chlorine gas, litmus papers.
|
K.L.B. BOOK II P. 51
|
|
9 | 5 |
CHEMICAL FAMILIES
|
Some uses of halogens and their compounds.
Noble Gases. Comparative physical properties of noble gases. |
By the end of the
lesson, the learner
should be able to:
To state uses of halogens and their compounds. |
Teacher elucidates uses of halogens and their compounds.
|
text book
|
K.L.B. BOOK II pp 52
|
|
10 | 1 |
CHEMICAL FAMILIES
STRUCTURE & BONDING STRUCTURE & BONDING |
Uses of noble gases.
Chemical bonds. Ionic bond. Ionic bond representation. |
By the end of the
lesson, the learner
should be able to:
State uses of noble gases. |
Teacher elucidates uses of noble gases.
|
text book
Chart- dot and cross diagrams. Models for bonding. |
K.L.B. BOOK IIP. 54
|
|
10 | 2-3 |
STRUCTURE & BONDING
|
Grant ionic structures.
Physical properties of ionic compounds. Covalent bond. Co-ordinate bond. Molecular structure. |
By the end of the
lesson, the learner
should be able to:
Describe the crystalline ionic compound. Give examples of ionic substances. Explain the formation of covalent bond Use dot and cross diagrams to represent covalent bond. |
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2. Drawing of dot-and-cross diagrams of covalent bonds. |
Giant sodium chloride model.
text book |
K.L.B. BOOK II PP 56-58
K.L.B. BOOK II PP 60-63 |
|
10 | 4 |
STRUCTURE & BONDING
|
Trend in physical properties of molecular structures.
Giant atomic structure in diamond. |
By the end of the
lesson, the learner
should be able to:
To describe van- der -waals forces. To explain the trend in physical properties of molecular structures. |
Discuss comparative physical properties of substances. exhibiting molecular structure.
Explain variation in the physical properties. |
Sugar, naphthalene, iodine rhombic sulphur.
Diagrams in textbooks. |
K.L.B. BOOK IIP 65
|
|
10 | 5 |
STRUCTURE & BONDING
|
Giant atomic structure in graphite.
Metallic bond. Uses of some metals. |
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in graphite. To state uses of graphite. |
Diagrammatic representation of graphite.
Discuss uses of graphite. |
Diagrams in textbooks.
text book |
K.L.B. BOOK II pp 69
|
|
11 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
|
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
The periodic table.
|
K.L.B. BOOK IIP. 76
|
|
11 | 2-3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in period 3.
Chemical properties of elements in period 3. Chemical properties of elements in the third period. Oxides of period 3 elements. Chlorides of period 3 elements. |
By the end of the
lesson, the learner
should be able to:
To compare other physical properties of elements across period 3. To identify bonds across elements in period 3. To explain chemical behavior of their oxide. |
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given. Comparative analysis, discussion and explanation. |
The periodic table.
|
K.L.B. BOOK II P. 77
K.L.B. BOOK II P. 84 |
|
11 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Allotropy.
Physical and chemical properties of diamond, graphite and amorphous carbon Burning carbon and oxygen. |
By the end of the
lesson, the learner
should be able to:
Define allotropes and allotropy. Identify allotropes of carbon. Represent diamond and graphite diagrammatically. |
Teacher exposes new terms.
Review covalent bond. Discuss boding in diamond and graphite. |
text book
Charcoal, graphite. Carbon, limewater, tube, limewater stand& Bunsen burner. |
K.L.B. BOOK II PP. 131-133
|
|
11 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Reduction properties of carbon.
Reaction of carbon with acids. Preparation of CO2. |
By the end of the
lesson, the learner
should be able to:
Describe reduction properties of carbon. Show reduction properties of carbon. |
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation |
CuO, pounded charcoal, Bunsen burner& bottle top
Conc. HNO3, limewater. |
K.L.B. BOOK II P.126
|
|
12 | 1 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Properties of CO2.
Chemical equations for reactions involving CO2. |
By the end of the
lesson, the learner
should be able to:
Describe properties of CO2 |
Simple experiments to determine properties of CO2.
Discuss the observations. |
Lime water,
Magnesium ribbon, Universal indicator, lit candle. text book |
K.L.B. BOOK II PP.138-139
|
|
12 | 2-3 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Uses of CO2.
Carbon monoxide lab preparation. Chemical properties of carbon monoxide. Carbonates and hydrogen carbonates. Heating carbonates and hydrogen carbonates. |
By the end of the
lesson, the learner
should be able to:
State uses of CO2 To describe chemical properties of carbon monoxide. |
Discuss briefly the uses of CO2.
Description of properties of carbon monoxide. Discussion and writing of chemical equations. |
text book
|
K.L.B. BOOK II PP.140-1
K.L.B. BOOK II PP. 144-145 |
|
12 | 4 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Extraction of sodium carbonate from trona.
Solvay process of preparing sodium carbonate. |
By the end of the
lesson, the learner
should be able to:
To draw schematic diagram for extraction of sodium carbonates. |
Discuss each step of the process.
Write relevant equations. |
text book
text book, chart |
K.L.B. BOOK II PP. 153-157
|
|
12 | 5 |
CARBON AND SOME OF ITS COMPOUNDS.
|
Importance of carbon in nature.
& its
effects on the environment.
|
By the end of the
lesson, the learner
should be able to:
To discuss: - Importance of carbon in nature. & Effects of carbon on the environment. |
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers. |
text book
|
K.L.B. BOOK II PP.157-158
|
Your Name Comes Here