Home






SCHEME OF WORK
Chemistry
Form 2 2025
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Atomic and mass numbers.
By the end of the lesson, the learner should be able to:


Name the subatomic particles in an atom.
Define atomic number and mass number of an atom.
Represent atomic and mass numbers symbolically.
Exposition on new concepts;
Probing questions;
Brief discussion.
text book
K.L.B.
BOOK II

PP. 1-3
2 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
First twenty elements of the periodic table.
Isotopes.
By the end of the lesson, the learner should be able to:
List the first twenty elements of the periodic table.
Write chemical symbols of the first twenty elements of the periodic table.
Define isotopes.
Give examples of isotopes.
Expository approach: referring to the periodic table, teacher exposes the first twenty elements.
Writing down a list of first twenty elements of the periodic table.

Exposition of definition and examples of isotopes.
Giving examples of isotopes.
Periodic table.
Periodic table.
K.L.B.
BOOK II

PP. 1-3
K.L.B.
BOOK II
P. 4





PP. 5-8
2 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration.
By the end of the lesson, the learner should be able to:
Represent isotopes symbolically.
Define an energy level.
Describe electronic configuration in an atom.
Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise.
Periodic table.
K.L.B.
BOOK II
P. 4





PP. 5-9
2 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration in diagrams.
By the end of the lesson, the learner should be able to:
Represent electronic configuration diagrammatically.
Supervised practice;
Written exercise.
text book
K.L.B.
BOOK II
PP. 5-8
3 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Periods of the periodic table.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Exposition ? Definition of a period.
Q/A: Examples of elements of the same period.
Periodic table.
K.L.B. BOOK IIP. 9
3 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Groups of the periodic table.
R.M.M. and isotopes.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Calculate R.M.M. from isotopic composition.
Exposition ? definition of a group.
Q/A: examples of elements of the same group.
Supervised practice involving calculation of RMM from isotopic composition.
Periodic table.
text book
K.L.B. BOOK IIP. 9
K.L.B. BOOK IIPP. 11-13
3 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Positive ions and ion formation.
Positive ions representation.
By the end of the lesson, the learner should be able to:
To define an ion and a cation.
Teacher gives examples of stable atoms.
Guided discovery that metals need to lose one, two or three electrons to attain stability.
Examples of positive ions.

text book
Chart  ion model.
K.L.B. BOOK IIPP 14-15
3 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.
Chart  ion model.
K.L.B. BOOK IIP 17
4 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of metals.
By the end of the lesson, the learner should be able to:
Recall valencies of metals among the first twenty elements in the periodic table.
Q/A to review previous lesson;
Exposition;
Guided discovery.
Periodic table.
K.L.B. BOOK IIP 17
4 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencie of non-metals.
Valencies of radicals.
By the end of the lesson, the learner should be able to:
Recall valencies of non-metals among the first twenty elements in the periodic table.
Define a radical.
Recall the valencies of common radicals.
Q/A to review previous lesson;
Exposition;
Guided discovery.

Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies.
Periodic table.
text book
K.L.B. BOOK IIP 17
K.L.B. BOOK IIP 18
4 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Oxidation number.
By the end of the lesson, the learner should be able to:
Define oxidation number.
Predict oxidation numbers from position of elements in the periodic table.
Q/A: Valencies.
Expose oxidation numbers of common ions.
Students complete a table of ions and their oxidation numbers.
The periodic table.
K.L.B. BOOK IIvP 18
4 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration, ion formed, valency and oxidation number
By the end of the lesson, the learner should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements.
Written exercise;
Exercise review.
text book
K.L.B. BOOK IIP 18
5 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. - Elements of equal valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of equal valencies.
Discuss formation of compounds such as NaCl, MgO.
text book
K.L.B. BOOK IIPP 19-20
5 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of unequal valencies.
Chemical formulae of compounds. -Elements of variable valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of unequal valencies.
To derive the formulae of some compounds involving elements of variable valencies.
Discuss formation of compounds such as MgCl2
Al (NO3)3
Discuss formation of compounds such as
-Copper (I) Oxide.
-Copper (II) Oxide.
-Iron (II) Sulphate.
-Iron (III) Sulphate.
text book
K.L.B. BOOK IIPP 19-20
K.L.B. BOOK IIP 20
5 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical equations.
By the end of the lesson, the learner should be able to:
To identify components of chemical equations.
Review word equations;
Exposition of new concepts with probing questions;
Brief discussion.
text book
K.L.B. BOOK IIPP 21-23
5 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Exposition;
Supervised practice.
text book
K.L.B. BOOK IIPP 24-25
6 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.(contd)
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Supervised practice;
Written exercise.
text book
K.L.B. BOOK IIPP 25-8
6 2-3
CHEMICAL FAMILIES
Alkali metals. Atomic and ionic radii of alkali metals
Ionisation energy of alkali metals.
By the end of the lesson, the learner should be able to:





Identify alkali metals.
State changes in atomic and ionic radii of alkali metals.

State changes in number of energy levels and ionisation energy of alkali metals.

Q/A to reviews elements of group I and their electronic configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Discussion & making deductions from the table.
Examine a table of elements, number of energy levels and their ionization energy.
Discuss the trend deduced from the table.
The periodic
text book
K.L.B. BOOK IIPP 28-29
6 4
CHEMICAL FAMILIES
Physical properties of alkali metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkali metals.
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion on physical properties of alkali metals.

Chart ? comparative properties of Li, Na, K.
K.L.B. BOOK IIPP 30-31
6 5
CHEMICAL FAMILIES
Chemical properties of alkali metals.
By the end of the lesson, the learner should be able to:
To describe reaction of alkali metals with water.
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.
text book
K.L.B. BOOK IIP. 32
7 1
CHEMICAL FAMILIES
Reaction of alkali metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas.
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.

Sodium, chlorine.
K.L.B. BOOK IIP. 33
7 2-3
CHEMICAL FAMILIES
Compounds of alkali metals.
Uses of alkali metals.
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkali metals.
Explain formation of hydroxides, oxides and chlorides of alkali metals.

State uses of alkali metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions.

Descriptive approach: Teacher elucidates uses of alkali metals.
text book
text book
Some alkaline earth metals.
K.L.B. BOOK II pp 33
K.L.B. BOOK II pp 34
7 4
CHEMICAL FAMILIES
Physical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkaline earth metals.
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion of physical properties of alkaline earth metals.
Some alkaline earth metals.
K.L.B. BOOK II P. 35
7 5
CHEMICAL FAMILIES
Electrical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
To describe electrical properties of alkaline earth metals.
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge.
Alkaline earth metals.
K.L.B. BOOK IIP. 37
8 1
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with oxygen.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with oxygen
Q/A: Review reactions of Mg, Ca, with oxygen.
The corresponding word and then chemical equations are then written and their correctness verified by the teacher.
text book
K.L.B. BOOK IIP. 38
8 2-3
CHEMICAL FAMILIES
Chemical properties of alkaline earth metals. Reaction of alkaline earth metals with water.
Reaction of alkaline earth metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To describe reaction of alkaline earth metals with water.
To write balanced equations for reaction of alkaline earth metals with chlorine gas.
Q/A: Review reaction of metals with water.
Writing down word and balanced chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.

Teacher demonstration- Reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.
Supervised practice.
Some alkaline earth metals.

Sodium, chlorine.
K.L.B. BOOK IIP. 39
K.L.B. BOOK II P. 41
8 4
CHEMICAL FAMILIES
Reaction of alkaline earth metals with dilute acids.
By the end of the lesson, the learner should be able to:
To write balanced equations for reactions of alkaline earth metals with dilute acids.
Changing word to chemical equations.
Supervised practice.
revision book
K.L.B. BOOK II PP. 43
8 5
CHEMICAL FAMILIES
Chemical formulae of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkaline earth metals.
Explain formation of hydroxides, oxides and chlorides of alkaline earth metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkaline earth metals.
Discuss combination of ions of alkaline earth metals with anions.
text book
K.L.B. BOOK II PP. 45-47
9 1
CHEMICAL FAMILIES
Uses of some alkaline earth metals and their compounds.
Halogens. Physical properties of halogens.
By the end of the lesson, the learner should be able to:
State uses of alkaline earth metals.
Descriptive approach: Teacher elucidates uses of alkaline earth metals.
text book
Iodine crystals, electrical wire, a bulb.
K.L.B. BOOK II PP. 45-47
9 2-3
CHEMICAL FAMILIES
Comparative physical properties of halogens.
Chemical properties of halogens.
Equations of reaction of halogens with metals.
By the end of the lesson, the learner should be able to:
To state and explain the trends in physical properties of halogens.
To write balanced chemical equations of reactions involving halogens.
Examine a comparative table of physical properties of halogens.
Discuss the deductions made from the table.

Re-write word equations as chemical equations then balance them.
Supervised practice.
text book
Chlorine, iron wool, bromine.
K.L.B. BOOK II P. 47
K.L.B. BOOK II P. 50
9 4
CHEMICAL FAMILIES
Reaction of halogens with water.
By the end of the lesson, the learner should be able to:
To describe reaction of halogens with water and the results obtained.
Bubbling chlorine gas through water.
Carry out litmus test for the water.
Explain the observations.
Chlorine gas, litmus papers.
K.L.B. BOOK II P. 51
9 5
CHEMICAL FAMILIES
Some uses of halogens and their compounds.
Noble Gases. Comparative physical properties of noble gases.
By the end of the lesson, the learner should be able to:
To state uses of halogens and their compounds.
Teacher elucidates uses of halogens and their compounds.
text book
K.L.B. BOOK II pp 52
10 1
CHEMICAL FAMILIES
STRUCTURE & BONDING
STRUCTURE & BONDING
Uses of noble gases.
Chemical bonds. Ionic bond.
Ionic bond representation.
By the end of the lesson, the learner should be able to:
State uses of noble gases.
Teacher elucidates uses of noble gases.
text book
Chart- dot and cross diagrams.
Models for bonding.
K.L.B. BOOK IIP. 54
10 2-3
STRUCTURE & BONDING
Grant ionic structures.
Physical properties of ionic compounds.
Covalent bond.
Co-ordinate bond.
Molecular structure.
By the end of the lesson, the learner should be able to:
Describe the crystalline ionic compound.
Give examples of ionic substances.
Explain the formation of covalent bond
Use dot and cross diagrams to represent covalent bond.
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide.
Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2.
Drawing of dot-and-cross diagrams of covalent bonds.
Giant sodium chloride model.
text book
K.L.B. BOOK II PP 56-58
K.L.B. BOOK II PP 60-63
10 4
STRUCTURE & BONDING
Trend in physical properties of molecular structures.
Giant atomic structure in diamond.
By the end of the lesson, the learner should be able to:
To describe van- der -waals forces.
To explain the trend in physical properties of molecular structures.
Discuss comparative physical properties of substances. exhibiting molecular structure.
Explain variation in the physical properties.
Sugar, naphthalene, iodine rhombic sulphur.
Diagrams in textbooks.
K.L.B. BOOK IIP 65
10 5
STRUCTURE & BONDING
Giant atomic structure in graphite.
Metallic bond. Uses of some metals.
By the end of the lesson, the learner should be able to:
To describe giant atomic structure in graphite.
To state uses of graphite.
Diagrammatic representation of graphite.

Discuss uses of graphite.
Diagrams in textbooks.
text book
K.L.B. BOOK II pp 69
11 1
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in periods.
By the end of the lesson, the learner should be able to:




To compare electrical conductivity of elements in period 3
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case.
Discuss the observations in terms of delocalised electrons.
The periodic table.
K.L.B. BOOK IIP. 76
11 2-3
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in period 3.
Chemical properties of elements in period 3.
Chemical properties of elements in the third period.
Oxides of period 3 elements.
Chlorides of period 3 elements.
By the end of the lesson, the learner should be able to:
To compare other physical properties of elements across period 3.
To identify bonds across elements in period 3.
To explain chemical behavior of their oxide.
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given.

Comparative analysis, discussion and explanation.
The periodic table.
K.L.B. BOOK II P. 77
K.L.B. BOOK II P. 84
11 4
CARBON AND SOME OF ITS COMPOUNDS.
Allotropy.
Physical and chemical properties of diamond, graphite and amorphous carbon
Burning carbon and oxygen.
By the end of the lesson, the learner should be able to:
Define allotropes and allotropy.
Identify allotropes of carbon.
Represent diamond and graphite diagrammatically.
Teacher exposes new terms.
Review covalent bond.
Discuss boding in diamond and graphite.
text book
Charcoal, graphite.
Carbon, limewater, tube, limewater stand& Bunsen burner.
K.L.B. BOOK II PP. 131-133
11 5
CARBON AND SOME OF ITS COMPOUNDS.
Reduction properties of carbon.
Reaction of carbon with acids. Preparation of CO2.
By the end of the lesson, the learner should be able to:
Describe reduction properties of carbon.
Show reduction properties of carbon.
Teacher demonstration ? Burn strongly a mixture of carbon and CuO on a bottle top.
Observe colour changes and give underlying explanation
CuO, pounded charcoal, Bunsen burner& bottle top
Conc. HNO3, limewater.
K.L.B. BOOK II P.126
12 1
CARBON AND SOME OF ITS COMPOUNDS.
Properties of CO2.
Chemical equations for reactions involving CO2.
By the end of the lesson, the learner should be able to:
Describe properties of CO2
Simple experiments to determine properties of CO2.

Discuss the observations.
Lime water,
Magnesium ribbon,
Universal indicator,
lit candle.
text book
K.L.B. BOOK II PP.138-139
12 2-3
CARBON AND SOME OF ITS COMPOUNDS.
Uses of CO2.
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide.
Carbonates and hydrogen carbonates.
Heating carbonates and hydrogen carbonates.
By the end of the lesson, the learner should be able to:
State uses of CO2
To describe chemical properties of carbon monoxide.
Discuss briefly the uses of CO2.
Description of properties of carbon monoxide.
Discussion and writing of chemical equations.
text book
K.L.B. BOOK II PP.140-1
K.L.B. BOOK II PP. 144-145
12 4
CARBON AND SOME OF ITS COMPOUNDS.
Extraction of sodium carbonate from trona.
Solvay process of preparing sodium carbonate.
By the end of the lesson, the learner should be able to:
To draw schematic diagram for extraction of sodium carbonates.
Discuss each step of the process.
Write relevant equations.
text book
text book, chart
K.L.B. BOOK II PP. 153-157
12 5
CARBON AND SOME OF ITS COMPOUNDS.
Importance of carbon in nature. & its effects on the environment.
By the end of the lesson, the learner should be able to:
To discuss: - Importance of carbon in nature.
&
Effects of carbon on the environment.
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers.
text book
K.L.B. BOOK II PP.157-158

Your Name Comes Here


Download

Feedback