If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Endothermic and Exothermic Reactions.
|
By the end of the
lesson, the learner
should be able to:
To differentiate between endothermic & exothermic reactions. |
Investigate temperature changes in solution formation. Obtain changes in temperature when ammonium nitrate and sodium hydroxide are dissolved in water, one at a time. |
Ammonium nitrate, Sodium hydroxide, thermometers. |
K.L.B. BK IV
Pages 32-33 |
|
2 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Energy level diagrams.
|
By the end of the
lesson, the learner
should be able to:
Represent endothermic reactions with exothermic reactions with energy level diagrams. |
Probing questions on relative energies of reactants and products in endothermic and exothermic and endothermic reactions.
|
student book
|
K.L.B. BK IV
Pages 33-35 |
|
2 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy Notation.
Change of state.
CAT |
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy. Distinguish positive enthalpy change from negative enthalpy change. Determine the M.P/ B.P of a pure substance. |
Q/A and brief discussion.
Class experiments: determine B.P of pure water/ M.P of naphthalene / ice. Use experimental results to plot temperature-time graphs. Explain the shape of the graphs. Q/A: review kinetic theory of matter. Apply the theory to explain the shape of the graph, and nature of bonding in substances. |
Ice, naphthalene, thermometers, graph papers.
|
K.L.B. BK IV
Pages 35-39 |
|
2 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of given substances. |
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water.
Determine temperature changes. Calculate molar heat of solution. Supervised practice. |
Ammonia nitrate / sodium hydroxide, thermometers.
|
K.L.B. BK IV
Pages 40-41 |
|
3 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of H2SO4.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of H2SO4. |
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature. Work out the molar heat of solution of H2SO4. |
Conc. H2SO4, thermometers.
|
K.L.B. BK IV
Pages 42-45 |
|
3 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of H2SO4.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of H2SO4. |
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature. Work out the molar heat of solution of H2SO4. |
Conc. H2SO4, thermometers.
|
K.L.B. BK IV
Pages 42-45 |
|
3 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy of combustion.
Enthalpy of combustion.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy of combustion. Determine the enthalpy of combustion of ethanol. Explain why actual heats of combustion are usually lower than the theoretical values. |
Group experiments / teacher demonstration.
Obtain and record results. Work out calculations. |
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
|
K.L.B. BK IV
Pages 45-48 |
|
3 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of displacement of ions.
|
By the end of the
lesson, the learner
should be able to:
Define the term molar heat of solution of displacement of ions. Determine the molar heat of solution of displacement of ions. |
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution. Work out the molar heat of displacement of a substance from a solution of its ions. |
Zinc, iron, magnesium, copper sulphate solution.
|
K.L.B. BK IV
Pages 48-50 |
|
4 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of neutralization.
|
By the end of the
lesson, the learner
should be able to:
Define the term neutralization. Determine the molar heat of neutralization of HCl with NaOH. |
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide. Note highest temperature of the solution. Work out the molar heat of neutralization. Solve other related problems. Assignment. |
2M HCl of known volume, 1M / 2M sodium hydroxide.
|
K.L.B. BK IV
Pages 50-53 |
|
4 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of neutralization.
|
By the end of the
lesson, the learner
should be able to:
Define the term neutralization. Determine the molar heat of neutralization of HCl with NaOH. |
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide. Note highest temperature of the solution. Work out the molar heat of neutralization. Solve other related problems. Assignment. |
2M HCl of known volume, 1M / 2M sodium hydroxide.
|
K.L.B. BK IV
Pages 50-53 |
|
4 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Standard enthalpy changes.
Hess?s Law. |
By the end of the
lesson, the learner
should be able to:
Define the term standard enthalpy change. Denote standard enthalpy change with the correct notation. State Hess?s law. Solve problems related to Hess?s law. |
Exposition & brief discussion.
Detailed discussion & guided discovery of the law. Illustrations of energy cycles and energy levels leading to Hess?s law. Worked examples. Supervised practice Written assignment. |
student book
|
K.L.B. BK IV
Pages 54-56 K.L.B. BK IV Pages 56-57 |
|
4 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat of solution hydration energy and lattice energy.
|
By the end of the
lesson, the learner
should be able to:
Define the terms lattice energy and hydration energy. Explain the relationship between heat of solution, hydration energy. Solve related problems. |
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy. Worked examples. Assignment. |
student book
|
K.L.B. BK IV
Pages 60-64 |
|
5 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat values of fuels.
|
By the end of the
lesson, the learner
should be able to:
Define the term fuel. Describe energy changes when a fuel undergoes combustion. Outline factors considered when choosing a suitable fuel. |
Probing questions and brief discussion.
|
student book
|
K.L.B. BK IV
Pages 64-66 |
|
5 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Environmental effects of fuels.
|
By the end of the
lesson, the learner
should be able to:
Outline some environmental effects of fuels. Identify measures taken to reduce environmental pollution. |
Q/A & open discussion.
|
student book
|
K.L.B. BK IV
Pages 67-68 |
|
5 | 3-4 |
ELECTRO-CHEMISTRY.
|
Redox reactions.
Oxidizing Numbers. |
By the end of the
lesson, the learner
should be able to:
Describe redox reactions in terms of gain / loss of electrons. Identify oxidizing / reducing agents involved in redox reactions. Outline rules of assigning oxidation numbers. Determine the oxidation numbers of an element in a given compound. Explain the use of oxidation numbers in naming compounds. |
Q/A: review cations, anions and charges. Write down ionic half equations and identify reducing / oxidizing agents. Exposition and giving specific examples. Work out oxidizing number of elements in given compounds. Copy and complete a table of compounds containing elements that more than one oxidation number. |
student book
|
K.L.B. BK IV
Pages 108-9 K.L.B. BK IV Pages 109-116 |
|
5 | 5 |
ELECTRO-CHEMISTRY.
|
Displacement reactions.
|
By the end of the
lesson, the learner
should be able to:
Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power. |
Class standard experiments: reacting metals with solutions containing metal ions.
Taking note of reactions and those that do not take place; and tabulating the results. |
Metals: Ca, Na, Zn, Fe, Pb, and Cu.
Solutions containing Ca2+, Mg2+, Zn2+, Fe2+. |
K.L.B. BK IV
Pages 116-120 |
|
6 | 1 |
ELECTRO-CHEMISTRY.
|
The oxidizing power of an element.
|
By the end of the
lesson, the learner
should be able to:
Arrange elements in order of their oxidizing power. |
Teacher demonstration / group expts:
Adding halogens to solutions containing halide ions. Tabulate the results. Discuss the results and arrive at the oxidizing power series of halogens. |
Halogens:
Cl2 (g), Br2 (l), I2 (s). Halides: KCl, KBr, KI. |
K.L.B. BK IV
Pages 120-122 |
|
6 | 2 |
ELECTRO-CHEMISTRY.
|
Cell diagrams.
|
By the end of the
lesson, the learner
should be able to:
Define the terms electrode, potential and e.m.f. of an electrochemical cell. Describe components of a cell diagram. Draw cell diagrams using correct notations. |
Teacher demonstration: Zinc/ copper cell.
Q/A & discussion: changes in oxidation numbers. Exposition: cell diagram and deducing the direction of electron flow. |
Zinc/ copper cell.
|
K.L.B. BK IV
Pages 123-128 |
|
6 | 3-4 |
ELECTRO-CHEMISTRY.
|
Standard Electrode Potentials.
Standard electrode potential series. |
By the end of the
lesson, the learner
should be able to:
Identify standard conditions for measuring electrode potentials. Define the term standard electrode potential of a cell. Write half reactions of electrochemical cells. Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. |
Descriptive and expository approaches: teacher exposes new concepts.
Q/A: review reactivity series, oxidizing agent, reducing agent. Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. |
student book
|
K.L.B. BK IV
Pages 129-131 K.L.B. BK IV Pages 131-133 |
|
6 | 5 |
ELECTRO-CHEMISTRY.
|
Emf of a cell.
|
By the end of the
lesson, the learner
should be able to:
Calculate emf of a cell using standard electrodes potentials. |
Q/A: review half-cells.
Worked examples; supervised practice. Assignment. |
student book
|
K.L.B. BK IV
Pages 133-136 |
|
7 | 1 |
ELECTRO-CHEMISTRY.
|
Possibility of a reaction to take place.
|
By the end of the
lesson, the learner
should be able to:
Predict whether a reaction will take place or not using standard electrode potentials. |
Worked examples.
Oral exercise. Assignment. |
student book
|
K.L.B. BK IV
Pages 136-137 |
|
7 | 2 |
ELECTRO-CHEMISTRY.
|
Primary and secondary chemical cells.
|
By the end of the
lesson, the learner
should be able to:
Describe the functioning of primary and secondary chemical cells. |
Exposition of new concepts and brief discussion
Assignment. |
student book
|
K.L.B. BK IV
Pages 138-141 |
|
7 | 3-4 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute NaCl.
Electrolysis of brine. |
By the end of the
lesson, the learner
should be able to:
Define the term electrolysis. Explain the concept of preferential discharge of ions. Identify products of electrolysis of brine. |
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. Teacher demonstration/ group experiments. Test for the products of electrolysis. Write relevant equations. |
Dilute sodium chloride voltameter.
Brine voltameter. |
K.L.B. BK IV
Pages 141-144 K.L.B. BK IV Pages 144-146 |
|
7 | 5 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute sulphuric (VI) acid.
Factors affecting electrolysis. |
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Sulphuric acid voltameter.
student book |
K.L.B. BK IV
Pages 146-148 |
|
8 | 1 |
ELECTRO-CHEMISTRY.
|
Application of electrolysis.
|
By the end of the
lesson, the learner
should be able to:
Describe some applications of electrolysis. |
Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal. |
Suitable voltameter.
|
K.L.B. BK IV
Pages 155-7 |
|
8 | 2 |
ELECTRO-CHEMISTRY.
|
Faraday?s law of electrolysis.
|
By the end of the
lesson, the learner
should be able to:
State Faraday?s law of electrolysis. Solve problems related to Faraday?s law of electrolysis. |
Discuss above results, leading to Faraday?s law of electrolysis.
Worked examples. Assignment. |
Weighing balance, stop watch, copper sulphate voltameter.
|
K.L.B. BK IV
Pages 161-4 |
|
8 | 3-4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Alkanols (Alcohols).
Nomenclature of alkanols. Isomerism in alkanols. |
By the end of the
lesson, the learner
should be able to:
Identify the functional group of alkanols. Explain formation of alkanol molecules. Name and draw the structure of simple alkanols. |
Q/A: review alkanes, alkenes and alkynes. Teacher exposes new concepts and links them with already known concepts. Guided discovery of naming system for alkanols. Draw and name structures of alkanols. |
student book
|
K.L.B. BK IV
Page 205 K.L.B. BK IV Pages 206-8 |
|
8 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Preparation of ethanol in the lab.
|
By the end of the
lesson, the learner
should be able to:
Describe preparation of ethanol in the laboratory. |
Group experiments / teacher demonstration.
Discuss the fermentation process. |
Calcium hydroxide solution, sugar solution, yeast.
|
K.L.B. BK IV
Pages 210-11 |
|
9 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Physical properties of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Explain the physical properties of alkanols. |
Comparative evaluation of physical properties of alkanols.
Q/A & discussion on variation in physical properties of alkanols. |
student book
|
K.L.B. BK IV
Page 212 |
|
9-10 |
Mid term |
|||||||
10 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Describe some chemical reactions of alkanols. |
Group experiments/ teacher demonstration to investigate combustion of ethanol and its reaction with metals.
Write corresponding chemical equations. |
student book
|
K.L.B. BK IV
Pages 213-5 |
|
10 | 3-4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Esters and esterification.
Oxidation of ethanol. Uses of alkanols. |
By the end of the
lesson, the learner
should be able to:
Explain formation of esters. Describe the esterification process. Explain oxidation of ethanol by an oxidizing agent. State uses of alkanols. Explain the effects of alcohol on human health |
Teacher exposes and explains new concepts.
Assignment. Q/A: review redox reactions, oxidizing and reducing agents. Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate. Write corresponding chemical equations. Open discussion. |
student book
|
K.L.B. BK IV
Pages 215-6 K.L.B. BK IV Pages 216-8 |
|
10 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Oxidation of ethanol.
Uses of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Explain oxidation of ethanol by an oxidizing agent. State uses of alkanols. Explain the effects of alcohol on human health |
Q/A: review redox reactions, oxidizing and reducing agents.
Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate. Write corresponding chemical equations. Open discussion. |
student book
|
K.L.B. BK IV
Pages 216-8 |
|
11 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Alkanoic (Carboxylic Acids).
|
By the end of the
lesson, the learner
should be able to:
Identify the functional group of alkanoic (carboxylic) acids. Explain formation of alkanoic acid molecule. |
Q/A: review functional group of alkanols.
Brief discussion. |
student book
|
K.L.B. BK IV
Page 219 |
|
11 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Nomenclature of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Name and draw the structure of simple alkanoic acids. |
Guided discovery of the naming system for alkanoic acids.
|
Chart: homologous series of alkanoic acids.
|
K.L.B. BK IV
Pages 219-221 |
|
11 | 3-4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Lab preparation of ethanoic acid.
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of ethanoic acid. |
Teacher demonstration: prepare ethanoic acid in the lab.
Brief discussion on preparation of ethanoic acid. |
Concentrated H2SO4, potassium manganate
(VII) Crystals, water bath. |
K.L.B. BK IV
Pages 221-223 |
|
11 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Physical properties of alkanoic acids.
Chemical properties of alkanoic acids. |
By the end of the
lesson, the learner
should be able to:
Explain some physical properties of alkanoic acids. |
Compare physical properties of some alkanoic acids.
Discuss the difference in physical properties among alkanoic acids. |
student book
Ethanoic acid, universal indicator, sodium carbonate, magnesium strip, ethanol, conc. H2SO4 and sodium hydroxide. |
K.L.B. BK IV
Pages 223-4 |
|
12 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties &
Uses of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Write equations for chemical reactions involving acids. State uses of alkanoic acids. |
Review and discuss the observations above.
Write corresponding chemical equations. Teacher elucidates uses of alkanoic acids. |
student book
|
K.L.B. BK IV
Pages 225-7 |
|
12 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Soap preparation in the lab.
|
By the end of the
lesson, the learner
should be able to:
Describe soap preparation in the lab. |
Group experiments,
Answer questions based on the experiments already carried out. |
student book
|
K.L.B. BK IV
Pages 227-230 |
|
12 | 3-4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Cleaning action of soap.
Effects of hard / soft water on soap. Soapless detergents. |
By the end of the
lesson, the learner
should be able to:
Describe the nature of a soap molecule. Explain the mode of action in cleaning. Prepare soapless detergents in the lab. State merits of soapless detergents over soaps. |
Expository and descriptive approaches.
Answer oral questions. Teacher demonsration. Brief discussion. |
student book
Distilled water, tap water, rainwater, sodium chloride solution. Calcium nitrate, Zinc Sulphate, etc. |
K.L.B. BK IV
Pages 230-232 K.L.B. BK IV Pages 235-238 |
|
12 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Polymers and polymerization.
|
By the end of the
lesson, the learner
should be able to:
Explain the concepts additional and condensation polymerization as methods of making synthetic polymers. Identify some products of polymerization. State merits and demerits of synthetic polymers over natural materials. |
Teacher exposes and explains new concepts. Detailed discussion. Assignment. |
student book
|
K.L.B. BK IV
Pages 238-242 |
Your Name Comes Here