If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Endothermic and Exothermic Reactions.
Energy level diagrams. |
By the end of the
lesson, the learner
should be able to:
To differentiate between endothermic & exothermic reactions. |
Investigate temperature changes in solution formation. Obtain changes in temperature when ammonium nitrate and sodium hydroxide are dissolved in water, one at a time. |
Ammonium nitrate,
Sodium hydroxide, thermometers. student book |
K.L.B. BK IV
Pages 32-33 |
|
2 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy Notation.
Change of state.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy. Distinguish positive enthalpy change from negative enthalpy change. Determine the M.P/ B.P of a pure substance. |
Q/A and brief discussion.
Class experiments: determine B.P of pure water/ M.P of naphthalene / ice. Use experimental results to plot temperature-time graphs. Explain the shape of the graphs. Q/A: review kinetic theory of matter. Apply the theory to explain the shape of the graph, and nature of bonding in substances. |
Ice, naphthalene, thermometers, graph papers.
|
K.L.B. BK IV
Pages 35-39 |
|
2 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution.
Molar heat of solution of H2SO4. |
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of given substances. Determine molar heat of solution of H2SO4. |
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water.
Determine temperature changes. Calculate molar heat of solution. Supervised practice. Dissolve some known volume of conc. H2SO4 in a given volume of water. Note the change in temperature. Work out the molar heat of solution of H2SO4. |
Ammonia nitrate / sodium hydroxide, thermometers.
Conc. H2SO4, thermometers. |
K.L.B. BK IV
Pages 40-41 K.L.B. BK IV Pages 42-45 |
|
2 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy of combustion.
Enthalpy of combustion.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy of combustion. Determine the enthalpy of combustion of ethanol. Explain why actual heats of combustion are usually lower than the theoretical values. |
Group experiments / teacher demonstration.
Obtain and record results. Work out calculations. |
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
|
K.L.B. BK IV
Pages 45-48 |
|
3 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of displacement of ions.
|
By the end of the
lesson, the learner
should be able to:
Define the term molar heat of solution of displacement of ions. Determine the molar heat of solution of displacement of ions. |
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution. Work out the molar heat of displacement of a substance from a solution of its ions. |
Zinc, iron, magnesium, copper sulphate solution.
|
K.L.B. BK IV
Pages 48-50 |
|
3 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of neutralization.
|
By the end of the
lesson, the learner
should be able to:
Define the term neutralization. Determine the molar heat of neutralization of HCl with NaOH. |
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide. Note highest temperature of the solution. Work out the molar heat of neutralization. Solve other related problems. Assignment. |
2M HCl of known volume, 1M / 2M sodium hydroxide.
|
K.L.B. BK IV
Pages 50-53 |
|
3 | 3-4 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Standard enthalpy changes.
Hess?s Law. |
By the end of the
lesson, the learner
should be able to:
Define the term standard enthalpy change. Denote standard enthalpy change with the correct notation. State Hess?s law. Solve problems related to Hess?s law. |
Exposition & brief discussion.
Detailed discussion & guided discovery of the law. Illustrations of energy cycles and energy levels leading to Hess?s law. Worked examples. Supervised practice Written assignment. |
student book
|
K.L.B. BK IV
Pages 54-56 K.L.B. BK IV Pages 56-57 |
|
3 | 5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat of solution hydration energy and lattice energy.
|
By the end of the
lesson, the learner
should be able to:
Define the terms lattice energy and hydration energy. Explain the relationship between heat of solution, hydration energy. Solve related problems. |
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy. Worked examples. Assignment. |
student book
|
K.L.B. BK IV
Pages 60-64 |
|
4 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat values of fuels.
|
By the end of the
lesson, the learner
should be able to:
Define the term fuel. Describe energy changes when a fuel undergoes combustion. Outline factors considered when choosing a suitable fuel. |
Probing questions and brief discussion.
|
student book
|
K.L.B. BK IV
Pages 64-66 |
|
4 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
ELECTRO-CHEMISTRY. |
Environmental effects of fuels.
Redox reactions. |
By the end of the
lesson, the learner
should be able to:
Outline some environmental effects of fuels. Identify measures taken to reduce environmental pollution. |
Q/A & open discussion.
|
student book
|
K.L.B. BK IV
Pages 67-68 |
|
4 | 3-4 |
ELECTRO-CHEMISTRY.
|
Oxidizing Numbers.
Displacement reactions. |
By the end of the
lesson, the learner
should be able to:
Outline rules of assigning oxidation numbers. Determine the oxidation numbers of an element in a given compound. Explain the use of oxidation numbers in naming compounds. Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power. |
Exposition and giving specific examples.
Work out oxidizing number of elements in given compounds. Copy and complete a table of compounds containing elements that more than one oxidation number. Class standard experiments: reacting metals with solutions containing metal ions. Taking note of reactions and those that do not take place; and tabulating the results. |
student book
Metals: Ca, Na, Zn, Fe, Pb, and Cu. Solutions containing Ca2+, Mg2+, Zn2+, Fe2+. |
K.L.B. BK IV
Pages 109-116 K.L.B. BK IV Pages 116-120 |
|
4 | 5 |
ELECTRO-CHEMISTRY.
|
The oxidizing power of an element.
Cell diagrams. |
By the end of the
lesson, the learner
should be able to:
Arrange elements in order of their oxidizing power. |
Teacher demonstration / group expts:
Adding halogens to solutions containing halide ions. Tabulate the results. Discuss the results and arrive at the oxidizing power series of halogens. |
Halogens:
Cl2 (g), Br2 (l), I2 (s). Halides: KCl, KBr, KI. Zinc/ copper cell. |
K.L.B. BK IV
Pages 120-122 |
|
5 | 1 |
ELECTRO-CHEMISTRY.
|
Standard Electrode Potentials.
|
By the end of the
lesson, the learner
should be able to:
Identify standard conditions for measuring electrode potentials. Define the term standard electrode potential of a cell. Write half reactions of electrochemical cells. |
Descriptive and expository approaches: teacher exposes new concepts.
|
student book
|
K.L.B. BK IV
Pages 129-131 |
|
5 | 2 |
ELECTRO-CHEMISTRY.
|
Standard electrode potential series.
|
By the end of the
lesson, the learner
should be able to:
Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. |
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. |
student book
|
K.L.B. BK IV
Pages 131-133 |
|
5 | 3-4 |
ELECTRO-CHEMISTRY.
|
Emf of a cell.
Possibility of a reaction to take place. Primary and secondary chemical cells. |
By the end of the
lesson, the learner
should be able to:
Calculate emf of a cell using standard electrodes potentials. Describe the functioning of primary and secondary chemical cells. |
Q/A: review half-cells.
Worked examples; supervised practice. Assignment. Exposition of new concepts and brief discussion Assignment. |
student book
|
K.L.B. BK IV
Pages 133-136 K.L.B. BK IV Pages 138-141 |
|
5 | 5 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute NaCl.
|
By the end of the
lesson, the learner
should be able to:
Define the term electrolysis. Explain the concept of preferential discharge of ions. |
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. |
Dilute sodium chloride voltameter.
|
K.L.B. BK IV
Pages 141-144 |
|
6 | 1 |
ELECTRO-CHEMISTRY.
|
Electrolysis of brine.
Electrolysis of dilute sulphuric (VI) acid. |
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of brine. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Brine voltameter.
Sulphuric acid voltameter. |
K.L.B. BK IV
Pages 144-146 |
|
6 | 2 |
ELECTRO-CHEMISTRY.
|
Factors affecting electrolysis.
|
By the end of the
lesson, the learner
should be able to:
Explain factors that affect electrolytic products discharged at electrodes. |
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes. Discussion: other factors; giving suitable examples. |
student book
|
K.L.B. BK IV
Pages 153-5 |
|
6 | 3-4 |
ELECTRO-CHEMISTRY.
METALS |
Application of electrolysis.
Faraday?s law of electrolysis. Ores of some metals. |
By the end of the
lesson, the learner
should be able to:
Describe some applications of electrolysis. Name the chief ores of some metals. |
Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal. Exposition and brief discussion. |
Suitable voltameter.
Weighing balance, stop watch, copper sulphate voltameter. |
K.L.B. BK IV
Pages 155-7 K.L.B. BK IV Pages 168-9 |
|
6 | 5 |
METALS
|
Occurrence and extraction of sodium.
Occurrence and extraction of aluminium. |
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of sodium. |
Oral questions on electrolysis and equations at electrodes.
Brief discussion on occurrence and extraction. |
Chart: Down?s cell.
student book |
K.L.B. BK IV
Pages 170-171 |
|
7 | 1 |
METALS
|
Occurrence and extraction of iron.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of iron. |
Brief discussion.
Write relevant chemical equations. |
Chart: Blast furnace.
|
K.L.B. BK IV
Pages 173-5 |
|
7 | 2 |
METALS
|
Occurrence and extraction of zinc.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of zinc by electrolysis and reduction methods. |
Brief discussion.
Write relevant chemical equations. |
Flow chart: extraction of Zinc.
|
K.L.B. BK IV
Pages 175-9 |
|
7-8 |
Midterm exams and midterm week |
|||||||
9 | 1 |
METALS
|
Extraction of lead.
|
By the end of the
lesson, the learner
should be able to:
Explain how lead is extracted. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of lead. |
Flow chart: extraction of lead.
|
K.L.B. BK IV
Pages 179-80 |
|
9 | 2 |
METALS
|
Occurrence and extraction of copper.
Physical properties of some metals. |
By the end of the
lesson, the learner
should be able to:
Describe extraction of copper. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of copper. |
Flow chart: extraction of copper.
student book |
K.L.B. BK IV
Pages 181-183 |
|
9 | 3-4 |
METALS
|
Reaction of metals with oxygen.
Reaction of metals with cold water and steam. |
By the end of the
lesson, the learner
should be able to:
Explain effect of burning metals in air. Describe reaction of metals with cold water and steam. Arrange the metals in order of reactivity with cold water and steam. |
Teacher demonstration / Group experiments.
Burning some metals in air. Write relevant equations. Brief discussion. Class experiments: Investigate reaction of some metals with cold water and steam. Analyse the results. |
Common lab. metals.
Metals: Al, Zn, Fe, Cu. |
K.L.B. BK IV
Pages 184-6 K.L.B. BK IV Pages 186-9 |
|
9 | 5 |
METALS
|
Reaction of metals with chlorine.
|
By the end of the
lesson, the learner
should be able to:
Describe the reaction of metals with chlorine. |
Teacher demonstration in a fume cupboard / in the open.
Investigate reaction of metals with chorine Write corresponding equations. |
Metals: Al, Zn, Fe, Cu.
|
K.L.B. BK IV
Pages 189-191 |
|
10 | 1 |
METALS
|
Reaction of metals with acids.
|
By the end of the
lesson, the learner
should be able to:
Describe and explain reaction of metals with acids. |
Group experiments: investigate reaction of metals with dilute acids.
Teacher demonstration: investigate reaction of metals with concentrated acids. Discuss the observations made and write relevant chemical equations. |
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4. |
K.L.B. BK IV
Pages 191-4 |
|
10 | 2 |
METALS
|
Uses of metals.
|
By the end of the
lesson, the learner
should be able to:
State uses of some metals and alloys. |
Q/A & brief discussion;
Uses of Sodium, Aluminium, Zinc, Iron and Copper & some alloys. |
student book
|
K.L.B. BK IV
Pages 194-7 |
|
10 | 3-4 |
METALS
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS) |
Environmental effects of extraction of metals.
Alkanols (Alcohols). Nomenclature of alkanols. |
By the end of the
lesson, the learner
should be able to:
Identify some environmental effects of extraction of metals. Name and draw the structure of simple alkanols. |
Oral questions and open discussion.
Assignment / Topic review. Guided discovery of naming system for alkanols. Draw and name structures of alkanols. |
student book
|
K.L.B. BK IV
Pages 197-8 K.L.B. BK IV Pages 206-8 |
|
10 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Isomerism in alkanols.
|
By the end of the
lesson, the learner
should be able to:
Describe positional and chain isomerism in alkanols. Explain formation of primary and secondary alkanols. |
Q/A: review the terms positional and chain isomerism.
Brief discussion on isomerism. Oral exercise: naming given organic compounds. Written exercise: writing structural formulae for isomers of organic compounds of a given molecular formula. |
student book
|
K.L.B. BK IV
Pages 208-10 |
|
11 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Preparation of ethanol in the lab.
Physical properties of alkanols. |
By the end of the
lesson, the learner
should be able to:
Describe preparation of ethanol in the laboratory. |
Group experiments / teacher demonstration.
Discuss the fermentation process. |
Calcium hydroxide solution, sugar solution, yeast.
student book |
K.L.B. BK IV
Pages 210-11 |
|
11 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties of alkanols.
|
By the end of the
lesson, the learner
should be able to:
Describe some chemical reactions of alkanols. |
Group experiments/ teacher demonstration to investigate combustion of ethanol and its reaction with metals.
Write corresponding chemical equations. |
student book
|
K.L.B. BK IV
Pages 213-5 |
|
11 | 3-4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Esters and esterification.
Oxidation of ethanol. Uses of alkanols. Alkanoic (Carboxylic Acids). |
By the end of the
lesson, the learner
should be able to:
Explain formation of esters. Describe the esterification process. Explain oxidation of ethanol by an oxidizing agent. State uses of alkanols. Explain the effects of alcohol on human health |
Teacher exposes and explains new concepts.
Assignment. Q/A: review redox reactions, oxidizing and reducing agents. Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate. Write corresponding chemical equations. Open discussion. |
student book
|
K.L.B. BK IV
Pages 215-6 K.L.B. BK IV Pages 216-8 |
|
11 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Nomenclature of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Name and draw the structure of simple alkanoic acids. |
Guided discovery of the naming system for alkanoic acids.
|
Chart: homologous series of alkanoic acids.
|
K.L.B. BK IV
Pages 219-221 |
|
12 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Lab preparation of ethanoic acid.
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of ethanoic acid. |
Teacher demonstration: prepare ethanoic acid in the lab.
Brief discussion on preparation of ethanoic acid. |
Concentrated H2SO4, potassium manganate
(VII) Crystals, water bath. |
K.L.B. BK IV
Pages 221-223 |
|
12 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Physical properties of alkanoic acids.
|
By the end of the
lesson, the learner
should be able to:
Explain some physical properties of alkanoic acids. |
Compare physical properties of some alkanoic acids.
Discuss the difference in physical properties among alkanoic acids. |
student book
|
K.L.B. BK IV
Pages 223-4 |
|
12 | 3-4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Chemical properties of alkanoic acids.
Chemical properties & Uses of alkanoic acids. Soap preparation in the lab. |
By the end of the
lesson, the learner
should be able to:
Explain some chemical properties of alkanoic acids. Write equations for chemical reactions involving acids. State uses of alkanoic acids. |
Group experiment: investigate some chemical properties of ethanoic acid.
Carry out tests and record observations in a table. Review and discuss the observations above. Write corresponding chemical equations. Teacher elucidates uses of alkanoic acids. |
Ethanoic acid, universal indicator, sodium carbonate, magnesium strip, ethanol, conc. H2SO4 and sodium hydroxide.
student book |
K.L.B. BK IV
Pages 224-5 K.L.B. BK IV Pages 225-7 |
|
12 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Cleaning action of soap.
|
By the end of the
lesson, the learner
should be able to:
Describe the nature of a soap molecule. Explain the mode of action in cleaning. |
Expository and descriptive approaches.
Answer oral questions. |
student book
|
K.L.B. BK IV
Pages 230-232 |
|
13 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Effects of hard / soft water on soap.
Soapless detergents. |
By the end of the
lesson, the learner
should be able to:
Explain the effects of hard/ soft water on soap. |
Group experiments: form soap lather in different solutions.
Deduce the effects of hard/ soft water on soap. |
Distilled water, tap water, rainwater, sodium chloride solution.
Calcium nitrate, Zinc Sulphate, etc. student book |
K.L.B. BK IV
Pages 232-235 |
|
13 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Polymers and polymerization.
|
By the end of the
lesson, the learner
should be able to:
Explain the concepts additional and condensation polymerization as methods of making synthetic polymers. Identify some products of polymerization. State merits and demerits of synthetic polymers over natural materials. |
Teacher exposes and explains new concepts. Detailed discussion. Assignment. |
student book
|
K.L.B. BK IV
Pages 238-242 |
|
13 | 3-4 |
RADIOACTIVITY
|
Definition of radioactivity.
Alpha particles. Equations involving alpha particles. Beta particles. Gamma rays. Radioactive Half-Life. |
By the end of the
lesson, the learner
should be able to:
Define radioactivity, a nuclide and radioactive decay. Differentiate between natural and artificial radioactivity. Write down and balance equations involving alpha particles. |
Q/A: Review the atomic structure. Exposition: symbolic representation of an atom / nucleus. Exposition: meaning of radioactivity and radioactive decay. Discussion: artificial and natural radioactivity. Q/A: Review atomic and mass numbers. Examples of balanced equations. Supervised practice. |
student book
student book Dice. |
K.L.B. BK IV
Pages 249-251 K.L.B. BK IV Page 257 |
|
13 | 5 |
RADIOACTIVITY
|
Radioactive decay curve.
Nuclear fusion and nuclear fission. Applications of radioactivity. |
By the end of the
lesson, the learner
should be able to:
Plot a radioactive decay curve to deduce the half ?life from the curve. |
Drawing a radioactive decay curve inferring the half-life of the sample from the graph.
|
Graph papers.
student book |
K.L.B. BK IV
Pages 254-5 |
Your Name Comes Here