If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 |
OPENING OF SCHOOL |
||||||||
2 | 1 |
Measurements
|
Money - Commission
|
By the end of the
lesson, the learner
should be able to:
- Calculate commission - Apply the concept of commission in real life situations - Appreciate the importance of commission in business |
- Role-play scenarios involving commission-based sales
- Calculate commission based on value of goods or services sold - Solve problems involving commission |
How do we calculate commission?
|
- Oxford Active Mathematics 7
- Page 184 - Writing materials |
- Observation
- Written assignments
- Class activities
|
|
2 | 2 |
Measurements
|
Money - Percentage commission
|
By the end of the
lesson, the learner
should be able to:
- Calculate percentage commission - Apply percentage commission in real life situations - Value the concept of percentage commission |
- Express commission as a fraction of the value of sales
- Convert the fraction to percentage - Calculate percentage commission in various scenarios - Solve problems involving percentage commission |
How do we calculate percentage commission?
|
- Oxford Active Mathematics 7
- Page 186 - Writing materials - Calculator |
- Observation
- Written assignments
- Class activities
|
|
2 | 3 |
Measurements
|
Money - Percentage commission
|
By the end of the
lesson, the learner
should be able to:
- Calculate percentage commission - Apply percentage commission in real life situations - Value the concept of percentage commission |
- Express commission as a fraction of the value of sales
- Convert the fraction to percentage - Calculate percentage commission in various scenarios - Solve problems involving percentage commission |
How do we calculate percentage commission?
|
- Oxford Active Mathematics 7
- Page 186 - Writing materials - Calculator |
- Observation
- Written assignments
- Class activities
|
|
2 | 4 |
Measurements
|
Money - Bills at home
|
By the end of the
lesson, the learner
should be able to:
- Identify different types of bills - Interpret bills at home - Appreciate the importance of bills in financial management |
- Study sample bills (water, electricity, internet)
- Identify the components of different bills - Discuss the importance of understanding bills |
How do we interpret bills?
|
- Oxford Active Mathematics 7
- Page 187 - Sample bills |
- Observation
- Oral questions
- Class activities
|
|
2 | 5 |
Measurements
|
Money - Preparing bills
|
By the end of the
lesson, the learner
should be able to:
- Prepare bills for goods and services - Apply bill preparation in real life situations - Show interest in preparing bills |
- Role-play seller and buyer scenarios
- Prepare bills for goods and services - Include necessary details in bills (items, quantities, unit prices, totals) |
How do we prepare bills?
|
- Oxford Active Mathematics 7
- Page 188 - Samples of shopping bills - Imitation money |
- Observation
- Written assignments
- Class activities
|
|
2 | 6 |
Measurements
|
Money - Preparing bills
|
By the end of the
lesson, the learner
should be able to:
- Prepare bills for goods and services - Apply bill preparation in real life situations - Show interest in preparing bills |
- Role-play seller and buyer scenarios
- Prepare bills for goods and services - Include necessary details in bills (items, quantities, unit prices, totals) |
How do we prepare bills?
|
- Oxford Active Mathematics 7
- Page 188 - Samples of shopping bills - Imitation money |
- Observation
- Written assignments
- Class activities
|
|
2 | 7 |
Measurements
|
Money - Postal charges
|
By the end of the
lesson, the learner
should be able to:
- Identify postal services - Calculate postal charges for different items - Appreciate the importance of postal services |
- Visit or discuss about the nearest post office
- Identify services offered at the post office - Calculate charges for sending letters, parcels, and other items - Solve problems involving postal charges |
How do we calculate charges to send items to different places?
|
- Oxford Active Mathematics 7
- Page 190 - Inland postal charges tables - Writing materials |
- Observation
- Written assignments
- Class activities
|
|
3 | 1 |
Measurements
|
Money - International postal charges
|
By the end of the
lesson, the learner
should be able to:
- Distinguish between inland and international postal services - Calculate international postal charges - Value the importance of international postal services |
- Study tables showing international postal charges
- Calculate charges for sending items to different countries - Compare charges for different methods of sending items internationally |
How do we calculate charges to send items to other countries?
|
- Oxford Active Mathematics 7
- |
- Observation
- Written assignments
- Class activities
|
|
3 | 2 |
Measurements
|
Money - International postal charges
|
By the end of the
lesson, the learner
should be able to:
- Distinguish between inland and international postal services - Calculate international postal charges - Value the importance of international postal services |
- Study tables showing international postal charges
- Calculate charges for sending items to different countries - Compare charges for different methods of sending items internationally |
How do we calculate charges to send items to other countries?
|
- Oxford Active Mathematics 7
- |
- Observation
- Written assignments
- Class activities
|
|
3 | 3 |
Measurements
|
Money - Mobile money services
|
By the end of the
lesson, the learner
should be able to:
- Identify mobile money services - Compare different mobile money services - Appreciate the importance of mobile money services |
- Identify various mobile money services available
- Discuss transaction charges across different services - Identify services that offer saving and credit facilities |
Which mobile money services have you heard of?
|
- Oxford Active Mathematics 7
- Page 198 - Charts showing mobile money charges |
- Observation
- Oral questions
- Class discussions
|
|
3 | 4 |
Measurements
|
Money - Mobile money transactions
|
By the end of the
lesson, the learner
should be able to:
- Work out mobile money transactions - Calculate charges for mobile money transactions - Value the use of mobile money in daily activities |
- Study mobile money transaction charges charts
- Calculate charges for sending, receiving, and withdrawing money - Solve problems involving mobile money transactions |
How do we work out the charges to send or receive money?
|
- Oxford Active Mathematics 7
- Page 199 - Mobile money transaction charges charts |
- Observation
- Written assignments
- Class activities
|
|
3 | 5 |
Geometry
|
Angles on a straight line
|
By the end of the
lesson, the learner
should be able to:
- Identify angles on a straight line - Relate angles on a straight line - Show interest in working out angles on a straight line |
- Learners identify different objects from the environment with angles on a straight line
- Learners draw a straight line and make angles with it - Learners measure the angles they have drawn and relate them |
How are angles on a straight line related to each other?
|
- Oxford Active Mathematics pg. 206
- Protractors - |
- Observation
- Oral questions
- Written assignments
|
|
3 | 6 |
Geometry
|
Angles on a straight line
|
By the end of the
lesson, the learner
should be able to:
- Apply the concept of supplementary angles - Solve problems involving angles on a straight line - Appreciate use of angles on a straight line in real life |
- Learners work out the values of angles on a straight line
- Learners discuss how angles on a straight line add up to 180° - Learners practice solving problems involving supplementary angles |
Where do we use angles on a straight line in real life?
|
- Oxford Active Mathematics pg. 207
- |
- Written tests
- Oral questions
- Class activities
|
|
3 | 7 |
Geometry
|
Angles at a point
|
By the end of the
lesson, the learner
should be able to:
- Identify angles at a point - Relate angles at a point - Show interest in angles at a point |
- Learners draw lines meeting at a point
- Learners measure the angles formed and discuss how they relate - Learners identify that angles at a point add up to 360° |
How are angles at a point related to each other?
|
- Oxford Active Mathematics pg. 208
- |
- Observation
- Oral questions
- Written assignments
|
|
4 |
MID-TERM EXAMINATION |
||||||||
5 | 1 |
Geometry
|
Alternate angles
|
By the end of the
lesson, the learner
should be able to:
- Identify alternate angles - Determine the values of alternate angles - Show interest in working with alternate angles |
- Learners draw parallel lines and a transversal
- Learners mark and measure angles formed - Learners identify and discuss alternate angles |
What are alternate angles?
|
- Oxford Active Mathematics pg. 210
- Protractors - Rulers - Parallel line models - |
- Observation
- Oral questions
- Written assignments
|
|
5 | 2 |
Geometry
|
Corresponding angles
|
By the end of the
lesson, the learner
should be able to:
- Identify corresponding angles - Determine the values of corresponding angles - Show interest in working with corresponding angles |
- Learners draw parallel lines and a transversal
- Learners mark and measure angles formed - Learners identify and discuss corresponding angles |
What are corresponding angles?
|
- Oxford Active Mathematics pg. 211
- Protractors - Rulers - Parallel line models -s |
- Written tests
- Oral questions
- Class activities
|
|
5 | 3 |
Geometry
|
Co-interior angles
Angles in a parallelogram |
By the end of the
lesson, the learner
should be able to:
- Identify co-interior angles - Determine the values of co-interior angles - Appreciate relationships among angles |
- Learners draw parallel lines and a transversal
- Learners mark and measure angles formed - Learners identify co-interior angles and discover they sum to 180° |
What are co-interior angles?
|
- Oxford Active Mathematics pg. 212
- Protractors - Rulers - |
- Observation
- Oral questions
- Written assignments
|
|
5 | 4 |
Geometry
|
Angle properties of polygons
|
By the end of the
lesson, the learner
should be able to:
- Identify different types of polygons - Determine the sum of interior angles in polygons - Appreciate angle properties of polygons |
- Learners draw different polygons
- Learners measure the interior angles of each polygon - Learners discuss the relationship between number of sides and sum of interior angles |
How do we get the sum of the interior angles in a polygon?
|
- Oxford Active Mathematics pg. 214
- Protractors - Rulers - Cut-outs of different polygons - |
- Observation
- Oral questions
- Written assignments
|
|
5 | 5 |
Geometry
|
Exterior angles of a polygon
|
By the end of the
lesson, the learner
should be able to:
- Identify exterior angles of a polygon - Determine the sum of exterior angles in a polygon - Show interest in exterior angles of polygons |
- Learners draw different polygons
- Learners identify and measure exterior angles of polygons - Learners discover the sum of exterior angles is always 360° |
What is the sum of exterior angles of a polygon?
|
- Oxford Active Mathematics pg. 215
- Protractors - Rulers - Cut-outs of different polygons - |
- Written tests
- Oral questions
- Class activities
|
|
5 | 6 |
Geometry
|
Measuring angles
|
By the end of the
lesson, the learner
should be able to:
- Identify different types of angles - Measure angles using a protractor - Appreciate the importance of measuring angles accurately |
- Learners draw different types of angles
- Learners measure angles using a protractor - Learners practice measuring various angles |
How do we measure angles?
|
- Oxford Active Mathematics pg. 220
- Protractors - |
- Observation
- Oral questions
- Written assignments
|
|
5 | 7 |
Geometry
|
Measuring angles
|
By the end of the
lesson, the learner
should be able to:
- Identify different types of angles - Measure angles using a protractor - Appreciate the importance of measuring angles accurately |
- Learners draw different types of angles
- Learners measure angles using a protractor - Learners practice measuring various angles |
How do we measure angles?
|
- Oxford Active Mathematics pg. 220
- Protractors - |
- Observation
- Oral questions
- Written assignments
|
|
6 | 1 |
Geometry
|
Bisecting angles
|
By the end of the
lesson, the learner
should be able to:
- Understand the concept of angle bisection - Bisect angles using a ruler and compass - Show interest in bisecting angles |
- Learners draw angles of various sizes
- Learners use a ruler and compass to bisect angles - Learners verify bisection by measuring the resulting angles |
Which steps do we follow to bisect an angle?
|
- Oxford Active Mathematics pg. 221
- Protractors - Rulers - Pair of compasses - |
- Written tests
- Oral questions
- Class activities
|
|
6 | 2 |
Geometry
|
Constructing 90° and 45°
|
By the end of the
lesson, the learner
should be able to:
- Construct 90° using a ruler and compass - Construct 45° using a ruler and compass - Show interest in geometric constructions |
- Learners draw a straight line and mark a point on it
- Learners construct 90° using a ruler and compass - Learners bisect 90° to obtain 45° |
How do we construct 90° and 45° angles?
|
- Oxford Active Mathematics pg. 222
- Rulers - Pair of compasses - Protractors for verification - |
- Observation
- Oral questions
- Written assignments
|
|
6 | 3 |
Geometry
|
Constructing 90° and 45°
|
By the end of the
lesson, the learner
should be able to:
- Construct 90° using a ruler and compass - Construct 45° using a ruler and compass - Show interest in geometric constructions |
- Learners draw a straight line and mark a point on it
- Learners construct 90° using a ruler and compass - Learners bisect 90° to obtain 45° |
How do we construct 90° and 45° angles?
|
- Oxford Active Mathematics pg. 222
- Rulers - Pair of compasses - Protractors for verification - |
- Observation
- Oral questions
- Written assignments
|
|
6 | 4 |
Geometry
|
Constructing 60° and 30°
|
By the end of the
lesson, the learner
should be able to:
- Construct 60° using a ruler and compass - Construct 30° using a ruler and compass - Appreciate the precision of geometric constructions |
- Learners draw a straight line and mark a point on it
- Learners construct 60° using a ruler and compass - Learners bisect 60° to obtain 30° |
Which steps do we follow to construct 60° and 30°?
|
- Oxford Active Mathematics pg. 223
- Rulers - Pair of compasses - Protractors for verification - Charts s |
- Written tests
- Oral questions
- Class activities
|
|
6 | 5 |
Geometry
|
Constructing 120°
|
By the end of the
lesson, the learner
should be able to:
- Construct 120° using a ruler and compass - Apply construction skills in different contexts - Show interest in angle constructions |
- Learners draw a straight line
- Learners construct 60° twice to obtain 120° - Learners verify the construction by measuring the angle |
Which steps do we follow to construct 120°?
|
- Oxford Active Mathematics pg. 224
- Rulers - Pair of compasses - Protractors for verification - |
- Observation
- Oral questions
- Written assignments
|
|
6 | 6 |
Geometry
|
Constructing 120°
|
By the end of the
lesson, the learner
should be able to:
- Construct 120° using a ruler and compass - Apply construction skills in different contexts - Show interest in angle constructions |
- Learners draw a straight line
- Learners construct 60° twice to obtain 120° - Learners verify the construction by measuring the angle |
Which steps do we follow to construct 120°?
|
- Oxford Active Mathematics pg. 224
- Rulers - Pair of compasses - Protractors for verification - |
- Observation
- Oral questions
- Written assignments
|
|
6 | 7 |
Geometry
|
Constructing 150°
|
By the end of the
lesson, the learner
should be able to:
- Construct 150° using a ruler and compass - Apply construction skills in different contexts - Show interest in angle constructions |
- Learners draw a straight line
- Learners construct 30° and identify that the adjacent angle is 150° - Learners verify the construction by measuring the angle |
Which steps do we follow to construct 150°?
|
- Oxford Active Mathematics pg. 225
- Rulers - Pair of compasses - |
- Written tests
- Oral questions
- Class activities
|
|
7 | 1 |
Geometry
|
Constructing 75° and 105°
|
By the end of the
lesson, the learner
should be able to:
- Construct 75° using a ruler and compass - Construct 105° using a ruler and compass - Show interest in angle constructions |
- Learners construct 90° and 60° within it
- Learners bisect 30° to obtain 75° - Learners identify that the adjacent angle to 75° is 105° |
How do we construct 75° and 105°?
|
- Oxford Active Mathematics pg. 226
- Rulers - Pair of compasses - |
- Observation
- Oral questions
- Written assignments
|
|
7 | 2 |
Geometry
|
Constructing multiples of 7.5°
|
By the end of the
lesson, the learner
should be able to:
- Construct angles that are multiples of 7.5° - Apply construction skills in different contexts - Appreciate the precision of geometric constructions |
- Learners construct 15° by bisecting 30°
- Learners bisect 15° to obtain 7.5° - Learners practice constructing various multiples of 7.5° |
How do we construct angles that are multiples of 7.5°?
|
- Oxford Active Mathematics pg. 226
- Rulers - Pair of compasses - |
- Written tests
- Oral questions
- Class activities
|
|
7 | 3 |
Geometry
|
Constructing multiples of 7.5°
|
By the end of the
lesson, the learner
should be able to:
- Construct angles that are multiples of 7.5° - Apply construction skills in different contexts - Appreciate the precision of geometric constructions |
- Learners construct 15° by bisecting 30°
- Learners bisect 15° to obtain 7.5° - Learners practice constructing various multiples of 7.5° |
How do we construct angles that are multiples of 7.5°?
|
- Oxford Active Mathematics pg. 226
- Rulers - Pair of compasses - |
- Written tests
- Oral questions
- Class activities
|
|
7 | 4 |
Geometry
|
Constructing equilateral triangles
|
By the end of the
lesson, the learner
should be able to:
- Identify properties of an equilateral triangle - Construct an equilateral triangle using a ruler and compass - Show interest in constructing triangles |
- Learners draw a straight line of given length
- Learners use a compass to mark arcs - Learners join points to form an equilateral triangle |
How do we construct an equilateral triangle?
|
- Oxford Active Mathematics pg. 227
- Rulers - Pair of compasses - Protractors for verification - |
- Observation
- Oral questions
- Written assignments
|
|
7 | 5 |
Geometry
|
Constructing isosceles triangles
|
By the end of the
lesson, the learner
should be able to:
- Identify properties of an isosceles triangle - Construct an isosceles triangle using a ruler and compass - Appreciate geometric constructions |
- Learners draw a straight line of given length
- Learners use a compass to mark arcs of equal radius - Learners join points to form an isosceles triangle |
How do we construct an isosceles triangle?
|
- Oxford Active Mathematics pg. 228
- Rulers - Pair of compasses - Protractors for verification - Cut-outs of isosceles triangles - |
- Written tests
- Oral questions
- Class activities
|
|
7 | 6 |
Geometry
|
Constructing isosceles triangles
|
By the end of the
lesson, the learner
should be able to:
- Identify properties of an isosceles triangle - Construct an isosceles triangle using a ruler and compass - Appreciate geometric constructions |
- Learners draw a straight line of given length
- Learners use a compass to mark arcs of equal radius - Learners join points to form an isosceles triangle |
How do we construct an isosceles triangle?
|
- Oxford Active Mathematics pg. 228
- Rulers - Pair of compasses - Protractors for verification - Cut-outs of isosceles triangles - |
- Written tests
- Oral questions
- Class activities
|
|
7 | 7 |
Geometry
|
Constructing right-angled triangles
|
By the end of the
lesson, the learner
should be able to:
- Identify properties of a right-angled triangle - Construct a right-angled triangle using a ruler and compass - Show interest in triangle constructions |
- Learners draw a straight line
- Learners construct a 90° angle - Learners complete the triangle by joining points |
How do we construct a right-angled triangle?
|
- Oxford Active Mathematics pg. 229
- Rulers - Pair of compasses - Protractors for verification - |
- Observation
- Oral questions
- Written assignments
|
|
8 | 1 |
Geometry
|
Constructing circles
|
By the end of the
lesson, the learner
should be able to:
- Identify elements of a circle - Construct circles using a compass - Appreciate the application of circles in real life |
- Learners use strings and sticks to construct circles outdoors
- Learners use a compass to draw circles of given radius - Learners identify radius and diameter of circles |
How do we construct circles?
|
- Oxford Active Mathematics pg. 231
- Pair of compasses - Rulers - String and sticks for outdoor activities - |
- Written tests
- Oral questions
- Class activities
|
|
8 | 2 |
Numbers
|
Integers - Identifying integers
|
By the end of the
lesson, the learner
should be able to:
-Identify integers in different situations -Show interest in learning about integers |
-Identify integers by carrying out activities involving positive and negative numbers and zero. For example, climbing up stairs (positive), going down stairs (negative). -Stand at a point (the zero point) and count the number of steps moved either forward or backward. |
Where do we use integers in real life situations?
|
MENTOR Mathematics Learner's Book pg. 1
-Number lines -Number cards |
-Observation
-Oral questions
-Written assignments
|
|
8 | 3 |
Numbers
|
Integers - Representing integers on a number line
|
By the end of the
lesson, the learner
should be able to:
-Represent integers on a number line -Show curiosity in representing integers |
-Draw and represent integers on number lines on learning materials. -Practice representing positive and negative integers on a number line. |
How do we represent integers on a number line?
|
MENTOR Mathematics Learner's Book pg. 2-3
-Number lines -Wood ash |
-Observation
-Oral questions
-Written tests
|
|
8 | 4 |
Numbers
|
Integers - Addition of integers
|
By the end of the
lesson, the learner
should be able to:
-Add integers on a number line -Appreciate the use of number line in addition of integers |
-Perform addition operations of integers on a number line. -Use counters to represent positive and negative integers and perform addition. |
How do we add integers on a number line?
|
MENTOR Mathematics Learner's Book pg. 4-5
-Red and blue counters -Number lines |
-Observation
-Oral questions
-Written assignments
|
|
8 | 5 |
Numbers
|
Integers - Subtraction of integers
Integers - Combined operations |
By the end of the
lesson, the learner
should be able to:
-Carry out subtraction of integers on a number line -Develop interest in solving problems involving subtraction of integers |
-Perform subtraction operations of integers on a number line. -Play creative games that involve number lines, for example jumping steps. |
How do we subtract integers on a number line?
|
MENTOR Mathematics Learner's Book pg. 5-6
-Number lines -Games MENTOR Mathematics Learner's Book pg. 7-8 -Number cards |
-Observation
-Oral questions
-Written tests
|
|
8 | 6 |
Numbers
|
Integers - Real life applications
|
By the end of the
lesson, the learner
should be able to:
-Apply operations of integers in real life situations -Appreciate the use of integers in daily life |
-Discuss real-life applications of integers such as temperature, altitude, profit and loss. -Use IT or other resources to learn more on operations of integers on number lines. |
How do we apply integers in real life situations?
|
MENTOR Mathematics Learner's Book pg. 8-9
-Digital resources -Internet |
-Observation
-Oral questions
-Written tests
|
|
8-9 |
REVISION, EXAMINATION & CLOSING |
Your Name Comes Here