Home






SCHEME OF WORK
Chemistry
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
CHLORINE AND ITS COMPOUNDS
Introduction and Preparation of Chlorine
By the end of the lesson, the learner should be able to:
Define chlorine and state its position in the periodic table. Describe the occurrence of chlorine in nature. Describe laboratory preparation of chlorine gas. Write balanced equations for chlorine preparation.
Q/A: Review Group VII elements and electron configuration of chlorine ( 8.7). Discussion: Occurrence as sodium chloride in sea water and rock salt. Practical work: Experiment 6.1 - Preparation using MnO2 + concentrated HCl. Setup apparatus as in Figure 6. Safety precautions for handling chlorine gas.
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
KLB Secondary Chemistry Form 4, Pages 195-196
2 2
CHLORINE AND ITS COMPOUNDS
Introduction and Preparation of Chlorine
By the end of the lesson, the learner should be able to:
Define chlorine and state its position in the periodic table. Describe the occurrence of chlorine in nature. Describe laboratory preparation of chlorine gas. Write balanced equations for chlorine preparation.
Q/A: Review Group VII elements and electron configuration of chlorine ( 8.7). Discussion: Occurrence as sodium chloride in sea water and rock salt. Practical work: Experiment 6.1 - Preparation using MnO2 + concentrated HCl. Setup apparatus as in Figure 6. Safety precautions for handling chlorine gas.
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
KLB Secondary Chemistry Form 4, Pages 195-196
2 3-4
CHLORINE AND ITS COMPOUNDS
Physical Properties of Chlorine
By the end of the lesson, the learner should be able to:
Investigate the physical properties of chlorine gas. Explain the method of collection used for chlorine. Test the solubility of chlorine in water. State the density and color of chlorine gas.
Practical work: Experiment 6.2 - Testing chlorine gas preserved from previous experiment. Recording observations in Table 6. Testing: Color, smell (caution - no direct smelling), density, solubility in water. Demonstration: Inverting gas jar in water trough. Discussion: Why collected by downward delivery.
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
KLB Secondary Chemistry Form 4, Pages 196-197
2 5
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Water
By the end of the lesson, the learner should be able to:
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine.
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
KLB Secondary Chemistry Form 4, Pages 197-199
3 1
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Metals
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with metals. Write balanced equations for metal-chlorine reactions. Explain the formation of metal chlorides. Demonstrate exothermic nature of these reactions.
Practical work: Experiment 6.4 - Reactions with burning magnesium, hot iron wire, dry chlorine over hot iron coil (Figure 6.2). Recording observations in Table 6. Observations: White fumes (MgCl2), glowing iron wire, black crystals (FeCl3). Discussion: Formation of higher oxidation state chlorides. Safety: Proper ventilation and eye protection.
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
KLB Secondary Chemistry Form 4, Pages 199-201
3 2
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Metals
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with metals. Write balanced equations for metal-chlorine reactions. Explain the formation of metal chlorides. Demonstrate exothermic nature of these reactions.
Practical work: Experiment 6.4 - Reactions with burning magnesium, hot iron wire, dry chlorine over hot iron coil (Figure 6.2). Recording observations in Table 6. Observations: White fumes (MgCl2), glowing iron wire, black crystals (FeCl3). Discussion: Formation of higher oxidation state chlorides. Safety: Proper ventilation and eye protection.
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
KLB Secondary Chemistry Form 4, Pages 199-201
3 3-4
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with metals. Write balanced equations for metal-chlorine reactions. Explain the formation of metal chlorides. Demonstrate exothermic nature of these reactions.
Investigate reactions of chlorine with non-metals. Demonstrate reaction with phosphorus and hydrogen. Write equations for non-metal chloride formation. Explain the vigorous nature of these reactions.
Practical work: Experiment 6.4 - Reactions with burning magnesium, hot iron wire, dry chlorine over hot iron coil (Figure 6.2). Recording observations in Table 6. Observations: White fumes (MgCl2), glowing iron wire, black crystals (FeCl3). Discussion: Formation of higher oxidation state chlorides. Safety: Proper ventilation and eye protection.
Practical work: Experiment 6.5 - Warming red phosphorus and lowering into chlorine. Demonstration: Burning hydrogen jet in chlorine. Observations: White fumes of phosphorus chlorides, hydrogen chloride formation. Writing equations: P4 + 6Cl2 → 4PCl3, H2 + Cl2 → 2HCl. Discussion: Formation of covalent chlorides.
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
KLB Secondary Chemistry Form 4, Pages 199-201
KLB Secondary Chemistry Form 4, Pages 201
3 5
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Non-metals
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with non-metals. Demonstrate reaction with phosphorus and hydrogen. Write equations for non-metal chloride formation. Explain the vigorous nature of these reactions.
Practical work: Experiment 6.5 - Warming red phosphorus and lowering into chlorine. Demonstration: Burning hydrogen jet in chlorine. Observations: White fumes of phosphorus chlorides, hydrogen chloride formation. Writing equations: P4 + 6Cl2 → 4PCl3, H2 + Cl2 → 2HCl. Discussion: Formation of covalent chlorides.
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
KLB Secondary Chemistry Form 4, Pages 201
4 1
CHLORINE AND ITS COMPOUNDS
Oxidising Properties of Chlorine
By the end of the lesson, the learner should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions.
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
KLB Secondary Chemistry Form 4, Pages 201-202
4 2
CHLORINE AND ITS COMPOUNDS
Reaction of Chlorine with Alkali Solutions
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder.
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder.
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
KLB Secondary Chemistry Form 4, Pages 202-203
4 3-4
CHLORINE AND ITS COMPOUNDS
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder.
Investigate displacement reactions of chlorine with halides. Test reactions with bromides and iodides. Write ionic equations for displacement reactions. Explain the order of reactivity of halogens.
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder.
Practical work: Experiment 6.8 - Bubbling chlorine through potassium bromide and potassium iodide solutions. Observations: Colorless to orange (Br2), colorless to brown (I2). Writing ionic equations: Cl2 + 2Br⁻ → 2Cl⁻ + Br2, Cl2 + 2I⁻ → 2Cl⁻ + I Discussion: Displacement as evidence of relative reactivity.
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
KLB Secondary Chemistry Form 4, Pages 202-203
KLB Secondary Chemistry Form 4, Pages 203-204
4 5
CHLORINE AND ITS COMPOUNDS
Oxidising Properties - Displacement Reactions
By the end of the lesson, the learner should be able to:
Investigate displacement reactions of chlorine with halides. Test reactions with bromides and iodides. Write ionic equations for displacement reactions. Explain the order of reactivity of halogens.
Practical work: Experiment 6.8 - Bubbling chlorine through potassium bromide and potassium iodide solutions. Observations: Colorless to orange (Br2), colorless to brown (I2). Writing ionic equations: Cl2 + 2Br⁻ → 2Cl⁻ + Br2, Cl2 + 2I⁻ → 2Cl⁻ + I Discussion: Displacement as evidence of relative reactivity.
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
KLB Secondary Chemistry Form 4, Pages 203-204
5 1
CHLORINE AND ITS COMPOUNDS
Test for Chloride Ions
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for chloride ions. Distinguish between different chloride tests. Practice qualitative analysis techniques. Write equations for chloride ion tests.
Practical work: Experiment 6.9 - Testing sodium chloride with concentrated H2SO4, testing with lead(II) nitrate solution. Recording observations in Table 6. Tests: White fumes with H2SO4 + ammonia test, white precipitate with Pb(NO3)2 that dissolves on warming. Writing equations: NaCl + H2SO4 → NaHSO4 + HCl, Pb²⁺ + 2Cl⁻ → PbCl
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 204-205
5 2
CHLORINE AND ITS COMPOUNDS
Test for Chloride Ions
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for chloride ions. Distinguish between different chloride tests. Practice qualitative analysis techniques. Write equations for chloride ion tests.
Practical work: Experiment 6.9 - Testing sodium chloride with concentrated H2SO4, testing with lead(II) nitrate solution. Recording observations in Table 6. Tests: White fumes with H2SO4 + ammonia test, white precipitate with Pb(NO3)2 that dissolves on warming. Writing equations: NaCl + H2SO4 → NaHSO4 + HCl, Pb²⁺ + 2Cl⁻ → PbCl
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 204-205
5 3-4
CHLORINE AND ITS COMPOUNDS
Uses of Chlorine and its Compounds
By the end of the lesson, the learner should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
KLB Secondary Chemistry Form 4, Pages 205-207
5 5
CHLORINE AND ITS COMPOUNDS
Uses of Chlorine and its Compounds
By the end of the lesson, the learner should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
KLB Secondary Chemistry Form 4, Pages 205-207
6 1
CHLORINE AND ITS COMPOUNDS
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used.
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 207-208
6 2
CHLORINE AND ITS COMPOUNDS
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used.
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 207-208
6 3-4
CHLORINE AND ITS COMPOUNDS
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used.
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 207-208
6 5
CHLORINE AND ITS COMPOUNDS
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used.
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 207-208
7 1
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
KLB Secondary Chemistry Form 4, Pages 208-211
7 2
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
KLB Secondary Chemistry Form 4, Pages 208-211
7 3-4
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
KLB Secondary Chemistry Form 4, Pages 208-211
7 5
CHLORINE AND ITS COMPOUNDS
Large-scale Manufacture of Hydrochloric Acid
By the end of the lesson, the learner should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process.
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
KLB Secondary Chemistry Form 4, Pages 211-212
8 1
CHLORINE AND ITS COMPOUNDS
Uses of Hydrochloric Acid
By the end of the lesson, the learner should be able to:
List the industrial uses of hydrochloric acid. Explain applications in metal treatment. Describe use in water treatment and manufacturing. Relate acid properties to industrial applications.
Discussion: Applications - rust removal and descaling, galvanizing preparation, electroplating preparation, water treatment (chlorination), sewage treatment. Manufacturing uses: dyes, drugs, photographic materials (AgCl), pH control in industries. Q/A: How acid properties make HCl suitable for these uses. Case studies: Metal cleaning processes, water purification systems.
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
KLB Secondary Chemistry Form 4, Pages 212-213
8 2
CHLORINE AND ITS COMPOUNDS
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry.
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 213-215
8 3-4
CHLORINE AND ITS COMPOUNDS
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry.
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 213-215
8 5
CHLORINE AND ITS COMPOUNDS
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry.
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 213-215

Your Name Comes Here


Download

Feedback