If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Nitric(V) Acid and Introduction to Nitrates
|
By the end of the
lesson, the learner
should be able to:
List major industrial uses of nitric acid Explain importance in fertilizer manufacture Describe use in explosives and dyes Introduce nitrate salts and their preparation |
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
|
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
|
KLB Secondary Chemistry Form 3, Pages 151
|
|
1 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
|
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
|
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
|
KLB Secondary Chemistry Form 3, Pages 151-153
|
|
1 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Test for Nitrates - Brown Ring Test
Environmental Pollution by Nitrogen Compounds |
By the end of the
lesson, the learner
should be able to:
Perform brown ring test for nitrates Explain mechanism of complex formation Use alternative copper test method Apply tests to unknown samples |
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
|
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations |
KLB Secondary Chemistry Form 3, Pages 153-154
|
|
1 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry |
By the end of the
lesson, the learner
should be able to:
Analyze methods to reduce nitrogen pollution Design pollution control strategies Evaluate effectiveness of current measures Propose new solutions for environmental protection Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts. |
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables |
KLB Secondary Chemistry Form 3, Pages 154-157
KLB Secondary Chemistry Form 3, Pages 119-157 |
|
2 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Practical Assessment - Nitrogen Compounds
|
By the end of the
lesson, the learner
should be able to:
Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately |
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
|
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
2 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Applications and Economic Importance
|
By the end of the
lesson, the learner
should be able to:
Evaluate economic importance of nitrogen industry Analyze industrial production costs and benefits Compare different manufacturing processes Assess impact on agricultural productivity |
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
|
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
2 | 3 |
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS SULPHUR AND ITS COMPOUNDS |
Chapter Review and Integration
Extraction of Sulphur Allotropes of Sulphur |
By the end of the
lesson, the learner
should be able to:
Synthesize all nitrogen chemistry concepts Compare preparation methods for nitrogen compounds Relate structure to properties and reactivity Connect laboratory and industrial processes |
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
|
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum) Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers |
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
2 | 4-5 |
SULPHUR AND ITS COMPOUNDS
|
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat Chemical Properties of Sulphur - Reactions with Elements Chemical Properties of Sulphur - Reactions with Acids |
By the end of the
lesson, the learner
should be able to:
Investigate the solubility of sulphur in different solvents. Explain the molecular structure of sulphur. Compare solubility in polar and non-polar solvents. State the physical properties of sulphur. Investigate the reaction of sulphur with oxygen. Investigate the reaction of sulphur with metals. Write balanced equations for reactions of sulphur. Explain the formation of sulphides. |
Practical work: Experiment 2(a) - Testing solubility of sulphur in water, benzene, methylbenzene, and carbon(IV) sulphide. Observation and recording in Table Discussion: Explain why sulphur dissolves in organic solvents but not water. Drawing: Puckered ring structure of S8 molecule.
Practical work: Experiment 3(a) - Burning sulphur in oxygen using deflagrating spoon. Testing with moist litmus paper. Practical work: Heating mixtures of sulphur with iron powder and copper powder. Observation: Exothermic reactions and color changes. Writing equations: Fe + S → FeS, 2Cu + S → Cu2S. |
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access |
KLB Secondary Chemistry Form 4, Pages 163-164
KLB Secondary Chemistry Form 4, Pages 165-167 |
|
3 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide Physical and Chemical Properties of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides. |
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
|
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 168-170
|
|
3 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Bleaching Action of Sulphur(IV) Oxide
|
By the end of the
lesson, the learner
should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing. |
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
|
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
|
KLB Secondary Chemistry Form 4, Pages 173
|
|
3 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Reducing Action of Sulphur(IV) Oxide
|
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions. |
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations.
|
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
|
KLB Secondary Chemistry Form 4, Pages 173-176
|
|
3 | 4-5 |
SULPHUR AND ITS COMPOUNDS
|
Oxidising Action of Sulphur(IV) Oxide
Test for Sulphate and Sulphite Ions & Uses of SO2 |
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry. |
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative. |
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses |
KLB Secondary Chemistry Form 4, Pages 176-177
KLB Secondary Chemistry Form 4, Pages 178-179 |
|
4 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties |
By the end of the
lesson, the learner
should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process. |
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
|
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard |
KLB Secondary Chemistry Form 4, Pages 179-181
|
|
4 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
|
By the end of the
lesson, the learner
should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions. |
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
|
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
|
KLB Secondary Chemistry Form 4, Pages 183-184
|
|
4 |
Midterm |
|||||||
5 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
|
By the end of the
lesson, the learner
should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions. |
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
|
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
|
KLB Secondary Chemistry Form 4, Pages 184
|
|
5 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Metals
|
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series. |
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations.
|
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
|
KLB Secondary Chemistry Form 4, Pages 184-185
|
|
5 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
|
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates. |
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
|
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
|
KLB Secondary Chemistry Form 4, Pages 185-186
|
|
5 | 4-5 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
Hydrogen Sulphide - Preparation and Physical Properties Chemical Properties of Hydrogen Sulphide |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions. Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions. |
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept.
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates. |
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers |
KLB Secondary Chemistry Form 4, Pages 186-187
KLB Secondary Chemistry Form 4, Pages 188-190 |
|
6 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Pollution Effects and Summary
|
By the end of the
lesson, the learner
should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry. |
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
|
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
|
KLB Secondary Chemistry Form 4, Pages 190-194
|
|
6 | 2 |
CHLORINE AND ITS COMPOUNDS
|
Introduction and Preparation of Chlorine
Physical Properties of Chlorine Chemical Properties of Chlorine - Reaction with Water |
By the end of the
lesson, the learner
should be able to:
Define chlorine and state its position in the periodic table. Describe the occurrence of chlorine in nature. Describe laboratory preparation of chlorine gas. Write balanced equations for chlorine preparation. |
Q/A: Review Group VII elements and electron configuration of chlorine ( 8.7). Discussion: Occurrence as sodium chloride in sea water and rock salt. Practical work: Experiment 6.1 - Preparation using MnO2 + concentrated HCl. Setup apparatus as in Figure 6. Safety precautions for handling chlorine gas.
|
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes |
KLB Secondary Chemistry Form 4, Pages 195-196
|
|
6 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with metals. Write balanced equations for metal-chlorine reactions. Explain the formation of metal chlorides. Demonstrate exothermic nature of these reactions. |
Practical work: Experiment 6.4 - Reactions with burning magnesium, hot iron wire, dry chlorine over hot iron coil (Figure 6.2). Recording observations in Table 6. Observations: White fumes (MgCl2), glowing iron wire, black crystals (FeCl3). Discussion: Formation of higher oxidation state chlorides. Safety: Proper ventilation and eye protection.
|
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 199-201
|
|
6 | 4-5 |
CHLORINE AND ITS COMPOUNDS
|
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions Oxidising Properties - Displacement Reactions Test for Chloride Ions |
By the end of the
lesson, the learner
should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions. Investigate displacement reactions of chlorine with halides. Test reactions with bromides and iodides. Write ionic equations for displacement reactions. Explain the order of reactivity of halogens. |
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Practical work: Experiment 6.8 - Bubbling chlorine through potassium bromide and potassium iodide solutions. Observations: Colorless to orange (Br2), colorless to brown (I2). Writing ionic equations: Cl2 + 2Br⁻ → 2Cl⁻ + Br2, Cl2 + 2I⁻ → 2Cl⁻ + I Discussion: Displacement as evidence of relative reactivity. |
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 201-202
KLB Secondary Chemistry Form 4, Pages 203-204 |
|
7 | 1 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Chlorine and its Compounds
|
By the end of the
lesson, the learner
should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine. |
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
|
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
|
KLB Secondary Chemistry Form 4, Pages 205-207
|
|
7 | 2 |
CHLORINE AND ITS COMPOUNDS
|
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used. |
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
|
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators |
KLB Secondary Chemistry Form 4, Pages 207-208
|
|
7 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Large-scale Manufacture of Hydrochloric Acid
|
By the end of the
lesson, the learner
should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process. |
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
|
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
|
KLB Secondary Chemistry Form 4, Pages 211-212
|
|
7 | 4-5 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary |
By the end of the
lesson, the learner
should be able to:
List the industrial uses of hydrochloric acid. Explain applications in metal treatment. Describe use in water treatment and manufacturing. Relate acid properties to industrial applications. Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry. |
Discussion: Applications - rust removal and descaling, galvanizing preparation, electroplating preparation, water treatment (chlorination), sewage treatment. Manufacturing uses: dyes, drugs, photographic materials (AgCl), pH control in industries. Q/A: How acid properties make HCl suitable for these uses. Case studies: Metal cleaning processes, water purification systems.
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts. |
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions |
KLB Secondary Chemistry Form 4, Pages 212-213
KLB Secondary Chemistry Form 4, Pages 213-215 |
|
8-9 |
End term exam |
Your Name Comes Here