Home






SCHEME OF WORK
Chemistry
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 4
ORGANIC CHEMISTRY I
Introduction to Organic Chemistry and Hydrocarbons
By the end of the lesson, the learner should be able to:
Define organic chemistry and hydrocarbons
Explain why carbon forms many compounds
Classify hydrocarbons into alkanes, alkenes, and alkynes
Identify the bonding in carbon compounds
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
Carbon models, Hydrocarbon structure charts, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 86-87
2 5
ORGANIC CHEMISTRY I
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
Fractional Distillation of Crude Oil
By the end of the lesson, the learner should be able to:
Identify natural sources of alkanes
Describe composition of natural gas and biogas
Explain crude oil as major source of alkanes
Describe biogas digester and its operation
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
KLB Secondary Chemistry Form 3, Pages 86-87
3 1-2
ORGANIC CHEMISTRY I
Cracking of Alkanes - Thermal and Catalytic Methods
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched
Isomerism in Alkanes - Structural Isomers
By the end of the lesson, the learner should be able to:
Define cracking of alkanes
Distinguish between thermal and catalytic cracking
Write equations for cracking reactions
Explain industrial importance of cracking
Name straight-chain alkanes using IUPAC rules
Identify parent chains in branched alkanes
Name branched alkanes with substituent groups
Apply systematic naming rules correctly
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits
Molecular model kits, Isomerism charts, Structural formula worksheets
KLB Secondary Chemistry Form 3, Pages 89-90
KLB Secondary Chemistry Form 3, Pages 90-92
3 3
ORGANIC CHEMISTRY I
Laboratory Preparation of Methane
Laboratory Preparation of Ethane
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of methane
Perform methane preparation experiment safely
Test physical and chemical properties of methane
Write equation for methane preparation
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
KLB Secondary Chemistry Form 3, Pages 94-96
3 4
ORGANIC CHEMISTRY I
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution
By the end of the lesson, the learner should be able to:
Describe physical properties of alkanes
Explain trends in melting and boiling points
Relate molecular size to physical properties
Compare solubility in different solvents
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets
KLB Secondary Chemistry Form 3, Pages 96-97
3 5
ORGANIC CHEMISTRY I
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups
By the end of the lesson, the learner should be able to:
List major uses of different alkanes
Explain industrial applications of alkanes
Describe environmental considerations
Evaluate economic importance of alkanes
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters
KLB Secondary Chemistry Form 3, Pages 98-100
4 1-2
ORGANIC CHEMISTRY I
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties
By the end of the lesson, the learner should be able to:
Apply IUPAC rules for naming alkenes
Number carbon chains to give lowest numbers to double bonds
Name branched alkenes with substituents
Distinguish position isomers of alkenes
Prepare ethene by dehydration of ethanol
Describe role of concentrated sulfuric acid
Set up apparatus safely for ethene preparation
Test physical and chemical properties of ethene
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
KLB Secondary Chemistry Form 3, Pages 101-102
KLB Secondary Chemistry Form 3, Pages 102-104
4 3
ORGANIC CHEMISTRY I
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization
By the end of the lesson, the learner should be able to:
Explain addition reactions due to C=C double bond
Write equations for halogenation of alkenes
Describe hydrogenation and hydrohalogenation
Explain addition mechanism
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
KLB Secondary Chemistry Form 3, Pages 105-107
4 4
ORGANIC CHEMISTRY I
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond
By the end of the lesson, the learner should be able to:
Perform chemical tests to identify alkenes
Use bromine water and KMnO₄ as test reagents
List industrial and domestic uses of alkenes
Explain importance in plastic manufacture
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
KLB Secondary Chemistry Form 3, Pages 108-109
4-5

Mid- term exams

5 4
ORGANIC CHEMISTRY I
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne
By the end of the lesson, the learner should be able to:
Apply IUPAC naming rules for alkynes
Name branched alkynes with substituents
Draw structural isomers of alkynes
Identify branching and positional isomerism
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 110-111
5 5
ORGANIC CHEMISTRY I
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests
By the end of the lesson, the learner should be able to:
Describe physical properties of alkynes
Compare alkyne properties with alkenes and alkanes
Write combustion equations for alkynes
Explain addition reactions of alkynes
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
KLB Secondary Chemistry Form 3, Pages 112-113
6 1-2
ORGANIC CHEMISTRY I
CHLORINE AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
Uses of Alkynes and Industrial Applications
Introduction and Preparation of Chlorine
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine
By the end of the lesson, the learner should be able to:
List industrial uses of alkynes
Explain oxy-acetylene welding applications
Describe use in synthetic fiber production
Evaluate importance as chemical starting materials
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine.
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
KLB Secondary Chemistry Form 3, Pages 115-116
KLB Secondary Chemistry Form 4, Pages 197-199
6 3
CHLORINE AND ITS COMPOUNDS
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
Test for Chloride Ions
By the end of the lesson, the learner should be able to:
Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder.
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder.
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 202-203
6 4
CHLORINE AND ITS COMPOUNDS
Uses of Chlorine and its Compounds
Hydrogen Chloride - Laboratory Preparation
By the end of the lesson, the learner should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
KLB Secondary Chemistry Form 4, Pages 205-207
6 5
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Chloride
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 208-211
7-9

End- term exams


Your Name Comes Here


Download

Feedback