If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
REPORTING AND REVISION |
|||||||
2 | 1 |
THE MOLE
|
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept |
By the end of the
lesson, the learner
should be able to:
Define relative mass using practical examples Compare masses of different objects using a reference standard Explain the concept of relative atomic mass Identify carbon-12 as the reference standard |
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
|
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts |
KLB Secondary Chemistry Form 3, Pages 25-27
|
|
2 | 2 |
THE MOLE
|
Interconversion of Mass and Moles for Elements
|
By the end of the
lesson, the learner
should be able to:
Apply the formula: moles = mass/molar mass Calculate mass from given moles of elements Convert between moles and number of atoms Solve numerical problems involving moles and mass |
Worked examples: Mass-mole conversions using triangle method. Supervised practice: Calculate moles in given masses of common elements. Problem solving: Convert moles to atoms using Avogadro's number. Assignment: Practice problems on interconversion.
|
Scientific calculators, Periodic table, Worked example charts, Formula triangles
|
KLB Secondary Chemistry Form 3, Pages 30-32
|
|
2 | 3-4 |
THE MOLE
|
Molecules and Moles - Diatomic Elements
Empirical Formula - Experimental Determination Empirical Formula - Reduction Method |
By the end of the
lesson, the learner
should be able to:
Distinguish between atoms and molecules Define relative molecular mass Calculate moles of molecules from given mass Determine number of atoms in molecular compounds Determine empirical formula using reduction reactions Calculate empirical formula from reduction data Apply reduction method to copper oxides Analyze experimental errors and sources |
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
Experiment: Reduction of copper(II) oxide using laboratory gas. Measure masses before and after reduction. Calculate moles of copper and oxygen. Determine empirical formula from mole ratios. Discuss experimental precautions. |
Molecular models, Charts showing diatomic elements, Scientific calculators
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner |
KLB Secondary Chemistry Form 3, Pages 29-30
KLB Secondary Chemistry Form 3, Pages 35-37 |
|
2 | 5 |
THE MOLE
|
Empirical Formula - Percentage Composition Method
Molecular Formula - Determination from Empirical Formula |
By the end of the
lesson, the learner
should be able to:
Calculate empirical formula from percentage composition Convert percentages to moles Determine simplest whole number ratios Apply method to various compounds |
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
|
Scientific calculators, Percentage composition charts, Worked example displays
Scientific calculators, Molecular mass charts, Worked example displays |
KLB Secondary Chemistry Form 3, Pages 37-38
|
|
3 | 1 |
THE MOLE
|
Molecular Formula - Combustion Analysis
|
By the end of the
lesson, the learner
should be able to:
Determine molecular formula from combustion data Calculate moles of products in combustion Relate product moles to reactant composition Apply combustion analysis to hydrocarbons |
Worked examples: Hydrocarbon combustion producing CO₂ and H₂O. Calculate moles of C and H from product masses. Determine empirical formula, then molecular formula. Practice: Various combustion analysis problems.
|
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons
|
KLB Secondary Chemistry Form 3, Pages 40-41
|
|
3 | 2 |
THE MOLE
|
Concentration and Molarity of Solutions
|
By the end of the
lesson, the learner
should be able to:
Define concentration and molarity of solutions Calculate molarity from mass and volume data Convert between different concentration units Apply molarity calculations to various solutions |
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities.
|
Scientific calculators, Molarity charts, Various salt samples for demonstration
|
KLB Secondary Chemistry Form 3, Pages 41-43
|
|
3 | 3-4 |
THE MOLE
|
Preparation of Molar Solutions
Dilution of Solutions Stoichiometry - Experimental Determination of Equations |
By the end of the
lesson, the learner
should be able to:
Describe procedure for preparing molar solutions Use volumetric flasks correctly Calculate masses needed for specific molarities Prepare standard solutions accurately Determine chemical equations from experimental data Calculate mole ratios from mass measurements Write balanced chemical equations Apply stoichiometry to displacement reactions |
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions. |
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment |
KLB Secondary Chemistry Form 3, Pages 43-46
KLB Secondary Chemistry Form 3, Pages 50-53 |
|
3 | 5 |
THE MOLE
|
Stoichiometry - Precipitation Reactions
Stoichiometry - Gas Evolution Reactions |
By the end of the
lesson, the learner
should be able to:
Investigate stoichiometry of precipitation reactions Determine mole ratios from volume measurements Write ionic equations for precipitation Analyze limiting and excess reagents |
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
|
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution |
KLB Secondary Chemistry Form 3, Pages 53-56
|
|
4 | 1 |
THE MOLE
|
Volumetric Analysis - Introduction and Apparatus
|
By the end of the
lesson, the learner
should be able to:
Define volumetric analysis and titration Identify and use titration apparatus correctly Explain functions of pipettes and burettes Demonstrate proper reading techniques |
Practical session: Familiarization with pipettes and burettes. Practice filling and reading burettes accurately. Learn proper meniscus reading. Use pipette fillers safely. Rinse apparatus with appropriate solutions.
|
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions
|
KLB Secondary Chemistry Form 3, Pages 58-59
|
|
4 | 2 |
THE MOLE
|
Titration - Acid-Base Neutralization
Titration - Diprotic Acids |
By the end of the
lesson, the learner
should be able to:
Perform acid-base titrations accurately Use indicators to determine end points Record titration data properly Calculate average titres from multiple readings |
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision.
|
Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart |
KLB Secondary Chemistry Form 3, Pages 59-62
|
|
4 | 3-4 |
THE MOLE
|
Standardization of Solutions
Back Titration Method Redox Titrations - Principles |
By the end of the
lesson, the learner
should be able to:
Define standardization process Standardize HCl using Na₂CO₃ as primary standard Calculate accurate concentrations from titration data Understand importance of primary standards Understand principle of back titration Apply back titration to determine composition Calculate concentrations using back titration data Determine atomic masses from back titration |
Experiment: Prepare approximately 0.1M HCl and standardize using accurately weighed Na₂CO₃. Use methyl orange indicator. Calculate exact molarity from titration results. Discuss primary standard requirements.
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass. |
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts |
KLB Secondary Chemistry Form 3, Pages 65-67
KLB Secondary Chemistry Form 3, Pages 67-70 |
|
4 | 5 |
THE MOLE
|
Redox Titrations - KMnO₄ Standardization
|
By the end of the
lesson, the learner
should be able to:
Standardize KMnO₄ solution using iron(II) salt Calculate molarity from redox titration data Apply 1:5 mole ratio in calculations Prepare solutions for redox titrations |
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio.
|
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes
|
KLB Secondary Chemistry Form 3, Pages 70-72
|
|
5 | 1 |
THE MOLE
|
Water of Crystallization Determination
Atomicity and Molar Gas Volume |
By the end of the
lesson, the learner
should be able to:
Determine water of crystallization in hydrated salts Use redox titration to find formula of hydrated salt Calculate value of 'n' in crystallization formulas Apply analytical data to determine complete formulas |
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
|
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus |
KLB Secondary Chemistry Form 3, Pages 72-73
|
|
5 | 2 |
THE MOLE
|
Combining Volumes of Gases - Experimental Investigation
|
By the end of the
lesson, the learner
should be able to:
Investigate Gay-Lussac's law experimentally Measure combining volumes of reacting gases Determine simple whole number ratios Write equations from volume relationships |
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
|
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
|
KLB Secondary Chemistry Form 3, Pages 75-77
|
|
5 | 3-4 |
THE MOLE
NITROGEN AND ITS COMPOUNDS |
Gas Laws and Chemical Equations
Uses of Nitric(V) Acid and Introduction to Nitrates Action of Heat on Nitrates - Decomposition Patterns |
By the end of the
lesson, the learner
should be able to:
Apply Avogadro's law to chemical reactions Use volume ratios to determine chemical equations Calculate product volumes from reactant volumes Solve problems involving gas stoichiometry List major industrial uses of nitric acid Explain importance in fertilizer manufacture Describe use in explosives and dyes Introduce nitrate salts and their preparation |
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates. |
Scientific calculators, Gas law charts, Volume ratio examples
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets |
KLB Secondary Chemistry Form 3, Pages 77-79
KLB Secondary Chemistry Form 3, Pages 151 |
|
5 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Test for Nitrates - Brown Ring Test
|
By the end of the
lesson, the learner
should be able to:
Perform brown ring test for nitrates Explain mechanism of complex formation Use alternative copper test method Apply tests to unknown samples |
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
|
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
|
KLB Secondary Chemistry Form 3, Pages 153-154
|
|
6 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions |
By the end of the
lesson, the learner
should be able to:
Explain sources of nitrogen pollution Describe formation of acid rain Discuss effects on environment and health Evaluate pollution control measures |
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
|
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data |
KLB Secondary Chemistry Form 3, Pages 154-157
|
|
6 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Comprehensive Problem Solving - Nitrogen Chemistry
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
|
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
6 | 3-4 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Practical Assessment - Nitrogen Compounds
Industrial Applications and Economic Importance Chapter Review and Integration |
By the end of the
lesson, the learner
should be able to:
Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately Synthesize all nitrogen chemistry concepts Compare preparation methods for nitrogen compounds Relate structure to properties and reactivity Connect laboratory and industrial processes |
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics. |
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets |
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
6-8 |
END OF TERM EXAMS |
|||||||
9 |
SCHOOL CLOSURE |
Your Name Comes Here