If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
ORGANIC CHEMISTRY II
|
Introduction to Alkanols and Nomenclature
|
By the end of the
lesson, the learner
should be able to:
Define alkanols and identify functional group - Apply nomenclature rules for alkanols - Draw structural formulae of simple alkanols - Compare alkanols with corresponding alkanes |
Q/A: Review alkanes, alkenes from Form 3
- Study functional group -OH concept - Practice naming alkanols using IUPAC rules - Complete Table 6.2 - alkanol structures |
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books
|
KLB Secondary Chemistry Form 4, Pages 167-170
|
|
2 | 2-3 |
ORGANIC CHEMISTRY II
|
Isomerism in Alkanols
Laboratory Preparation of Ethanol Industrial Preparation and Physical Properties Chemical Properties of Alkanols I Chemical Properties of Alkanols II |
By the end of the
lesson, the learner
should be able to:
Explain positional and chain isomerism - Draw isomers of given alkanols - Name different isomeric forms - Classify isomers as primary, secondary, or tertiary Test reactions of ethanol with various reagents - Write equations for ethanol reactions - Identify products formed - Explain reaction mechanisms |
Study positional isomerism examples (propan-1-ol vs propan-2-ol)
- Practice drawing chain isomers - Exercises on isomer identification and naming - Discussion on structural differences Experiment 6.2: Test ethanol with burning, universal indicator, sodium metal, acids - Record observations in Table 6.4 - Write balanced equations - Discuss reaction types |
Isomer structure charts, molecular models, practice worksheets, student books
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer Table 6.3, industrial process diagrams, ethene structure models, property comparison charts Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus |
KLB Secondary Chemistry Form 4, Pages 170-171
KLB Secondary Chemistry Form 4, Pages 173-175 |
|
2 | 4 |
ORGANIC CHEMISTRY II
|
Uses of Alkanols and Health Effects
Introduction to Alkanoic Acids Laboratory Preparation of Ethanoic Acid |
By the end of the
lesson, the learner
should be able to:
State various uses of alkanols - Explain health effects of alcohol consumption - Discuss methylated spirits - Analyze alcohol in society |
Discussion on alkanol applications as solvents, fuels, antiseptics
- Health effects of alcohol consumption - Methylated spirits composition - Social implications |
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials
Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask |
KLB Secondary Chemistry Form 4, Pages 176-177
|
|
2 | 5 |
ORGANIC CHEMISTRY II
|
Physical and Chemical Properties of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Investigate chemical reactions of ethanoic acid - Test with various reagents - Write chemical equations - Analyze acid strength |
Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases
- Record observations - Write equations - Discuss weak acid behavior |
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes
|
KLB Secondary Chemistry Form 4, Pages 180-182
|
|
3 | 1 |
ORGANIC CHEMISTRY II
|
Esterification and Uses of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Explain ester formation process - Write esterification equations - State uses of alkanoic acids - Prepare simple esters |
Complete esterification experiments
- Study concentrated H₂SO₄ as catalyst - Write general esterification equation - Discuss applications in food, drugs, synthetic fibres |
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
|
KLB Secondary Chemistry Form 4, Pages 182-183
|
|
3 | 2-3 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
Mode of Action of Soap and Hard Water Effects Soapless Detergents and Environmental Effects |
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents Explain soapless detergent preparation - Compare advantages/disadvantages - Discuss environmental impact - Analyze pollution effects |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation Study alkylbenzene sulphonate preparation - Compare Table 6.9 - soap vs soapless - Discussion on eutrophication and biodegradability - Environmental awareness |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents |
KLB Secondary Chemistry Form 4, Pages 183-186
KLB Secondary Chemistry Form 4, Pages 188-191 |
|
3 | 4 |
ORGANIC CHEMISTRY II
|
Introduction to Polymers and Addition Polymerization
|
By the end of the
lesson, the learner
should be able to:
Define polymers, monomers, and polymerization - Explain addition polymerization - Draw polymer structures - Calculate polymer properties |
Study polymer concept and terminology
- Practice drawing addition polymers from monomers - Examples: polyethene, polypropene, PVC - Calculate molecular masses |
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
|
KLB Secondary Chemistry Form 4, Pages 191-195
|
|
3 | 5 |
ORGANIC CHEMISTRY II
|
Addition Polymers - Types and Properties
Condensation Polymerization and Natural Polymers |
By the end of the
lesson, the learner
should be able to:
Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples |
KLB Secondary Chemistry Form 4, Pages 195-197
|
|
4 | 1 |
ORGANIC CHEMISTRY II
|
Polymer Properties and Applications
|
By the end of the
lesson, the learner
should be able to:
Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection |
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis |
Table 6.10, polymer application samples, environmental impact studies, product examples
|
KLB Secondary Chemistry Form 4, Pages 200-201
|
|
4 | 2-3 |
ORGANIC CHEMISTRY II
ORGANIC CHEMISTRY I |
Comprehensive Problem Solving and Integration
Introduction to Organic Chemistry and Hydrocarbons Sources of Alkanes - Natural Gas, Biogas, and Crude Oil |
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving alkanols and acids - Apply knowledge to practical situations - Integrate polymer concepts - Practice examination questions Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Worked examples on organic synthesis
- Problem-solving on isomers, reactions, polymers - Integration of all unit concepts - Practice examination-style questions Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production. |
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts
Carbon models, Hydrocarbon structure charts, Molecular model kits Biogas digester model/diagram, Natural gas composition charts, Organic waste samples |
KLB Secondary Chemistry Form 4, Pages 167-201
KLB Secondary Chemistry Form 3, Pages 86-87 |
|
4 | 4 |
ORGANIC CHEMISTRY I
|
Fractional Distillation of Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size |
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
|
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
|
KLB Secondary Chemistry Form 3, Pages 87-89
|
|
4 | 5 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
Alkane Series and Homologous Series Concept |
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
|
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
Alkane series chart, Molecular formula worksheets, Periodic table |
KLB Secondary Chemistry Form 3, Pages 89-90
|
|
5 | 1 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkanes - Straight Chain and Branched
|
By the end of the
lesson, the learner
should be able to:
Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly |
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
|
Structural formula charts, IUPAC naming rules poster, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
5 | 2-3 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkanes - Structural Isomers
Laboratory Preparation of Methane Laboratory Preparation of Ethane |
By the end of the
lesson, the learner
should be able to:
Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection. |
Molecular model kits, Isomerism charts, Structural formula worksheets
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials |
KLB Secondary Chemistry Form 3, Pages 92-94
KLB Secondary Chemistry Form 3, Pages 94-96 |
|
5 | 4 |
ORGANIC CHEMISTRY I
|
Physical Properties of Alkanes
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
|
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
|
KLB Secondary Chemistry Form 3, Pages 96-97
|
|
5 | 5 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
|
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
|
Molecular models, Halogenation reaction charts, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 97-98
|
|
6 | 1 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups |
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
|
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters |
KLB Secondary Chemistry Form 3, Pages 98-100
|
|
6 | 2-3 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional |
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level). |
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models |
KLB Secondary Chemistry Form 3, Pages 101-102
KLB Secondary Chemistry Form 3, Pages 102 |
|
6 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
6 | 5 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
|
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
|
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 105-107
|
|
7 | 1 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
|
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
|
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
7 | 2-3 |
ORGANIC CHEMISTRY I
|
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond Nomenclature and Isomerism in Alkynes |
By the end of the
lesson, the learner
should be able to:
Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents. |
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 108-109
KLB Secondary Chemistry Form 3, Pages 110-111 |
|
7 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
|
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
|
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
|
KLB Secondary Chemistry Form 3, Pages 111-112
|
|
7 | 5 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests Uses of Alkynes and Industrial Applications |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples |
KLB Secondary Chemistry Form 3, Pages 112-113
|
Your Name Comes Here