If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 3 |
Living Things and Their Environment
|
Human Excretory System - Functions of urinary system parts
|
By the end of the
lesson, the learner
should be able to:
- Describe functions of kidneys, ureters, bladder and urethra - Explain the process of urine formation - Appreciate the complexity of kidney function |
- Answer questions about functions of urinary system parts - Use textbooks to search for function information - Take turns reading questions and answering - Share findings with classmates |
How do the parts of the urinary system work together?
|
- Master Integrated Science pg. 126 - Function reference materials - Question cards |
- Assessment rubrics
- Oral questions
- Written assignments
|
|
1 | 4 |
Living Things and Their Environment
|
Human Excretory System - External parts of the kidney
|
By the end of the
lesson, the learner
should be able to:
- Identify external parts of the kidney - Label renal artery, renal vein, hilum and renal capsule - Understand kidney structure |
- Study diagram and identify parts marked A to C - Use charts to compare answers - Draw well-labeled diagram of kidney - Search for information on kidney functions |
What are the external parts of the kidney and their functions?
|
- Master Integrated Science pg. 127 - Kidney structure charts - Digital resources |
- Practical work
- Observation schedule
- Written tests
|
|
1 | 5 |
Living Things and Their Environment
|
Human Excretory System - Kidney disorders and their causes
Human Excretory System - Prevention of kidney disorders |
By the end of the
lesson, the learner
should be able to:
- Identify common kidney disorders - Describe causes of kidney stones and kidney failure - Understand the importance of kidney health |
- Search for information on kidney disorders - Read conversation with resource person - Identify kidney disorders mentioned - Discuss causes and prevention methods |
What are common kidney disorders and what causes them?
|
- Master Integrated Science pg. 128
- Reference materials - Case study conversations - Master Integrated Science pg. 129 - Health promotion materials - Resource person |
- Checklist
- Anecdotal records
- Oral questions
|
|
2 | 1 |
Living Things and Their Environment
|
Human Excretory System - Promoting skin health
|
By the end of the
lesson, the learner
should be able to:
- Identify practices that promote healthy skin - Develop good hygiene habits - Appreciate the importance of skin care |
- Study pictures and identify healthy skin - Discuss activities to promote healthy skin - Give advice for skin hygiene scenarios - Search for information on skin health practices |
What activities promote healthy skin?
|
- Master Integrated Science pg. 130 - Health education materials - Digital devices |
- Practical work
- Assessment rubrics
- Checklist
|
|
2 | 2-3 |
Living Things and Their Environment
|
Human Excretory System - Promoting kidney health
Human Excretory System - Developing daily health logs |
By the end of the
lesson, the learner
should be able to:
- Identify practices that promote healthy kidneys - Understand the role of diet and exercise - Develop commitment to kidney health - Create daily logs for skin and kidney health - Plan health-promoting activities - Take responsibility for personal health |
- Discuss practices to promote kidney health - Analyze effects of inadequate water intake - Understand dietary advice for kidney health - Search for kidney health information - Study sample daily log for health activities - Create personal plan using provided guide - Show plan to family members - Follow and monitor daily health activities |
What lifestyle practices promote healthy kidneys?
How can we plan and track activities that promote skin and kidney health? |
- Master Integrated Science pg. 131 - Nutrition information - Health guidelines - Master Integrated Science pg. 132 - Planning templates - Family involvement |
- Oral questions
- Written assignments
- Self-assessment
- Portfolio assessment - Self-monitoring - Family feedback |
|
2 | 4 |
Living Things and Their Environment
|
Human Excretory System - Integration and health promotion
|
By the end of the
lesson, the learner
should be able to:
- Integrate knowledge of excretory system with health practices - Share health knowledge with family - Demonstrate leadership in health promotion |
- Share learning with parents or guardians - Discuss additional health promotion strategies - Connect excretory system to nutrition concepts - Develop health education materials |
How can knowledge of the excretory system benefit families and communities?
|
- Master Integrated Science pg. 133 - Community health resources - Family discussion guides |
- Community feedback
- Health promotion projects
- Presentation assessment
|
|
2 | 5 |
Living Things and Their Environment
|
Human Excretory System - Review and assessment
Human Excretory System - Extension and enrichment |
By the end of the
lesson, the learner
should be able to:
- Demonstrate comprehensive understanding of excretory system - Apply knowledge to solve health problems - Show mastery of key concepts |
- Complete comprehensive assessment questions - Identify body organs and their functions - List activities that promote organ health - Provide health advice for kidney disorders |
What have I learned about the human excretory system?
|
- Assessment papers
- Review materials - Health case studies - Advanced health resources - Research materials - Presentation tools |
- Summative assessment
- Written tests
- Assessment rubrics
|
|
3 | 1 |
Living Things and Their Environment
|
Human Excretory System - Final integration and reflection
|
By the end of the
lesson, the learner
should be able to:
- Synthesize learning from entire strand - Reflect on personal growth and understanding - Set goals for continued health learning |
- Complete reflection on entire Living Things strand - Connect reproductive and excretory systems - Evaluate personal health practices - Plan for continued health education |
How has learning about living things and their environment changed my understanding of health?
|
- Reflection journals - Integration activities - Goal-setting materials |
- Reflection assessment
- Self-evaluation
- Portfolio review
|
|
3 | 2-3 |
Force and Energy
|
Electrical Energy - Sources of electricity in the environment
Electrical Energy - Solar, hydro-electric and geothermal power |
By the end of the
lesson, the learner
should be able to:
- Identify sources of electricity in the environment - Distinguish between renewable and non-renewable sources - Appreciate the variety of electricity sources - Describe how solar power is generated - Explain hydro-electric power generation - Understand geothermal energy production |
- Brainstorm on electrical energy uses - Identify sources of electricity at school, home, hospital, market - Study images and identify electricity sources - Discuss sources used for laboratory experiments - Search for information on solar, hydro-electric and geothermal power - Study figures showing power generation systems - Discuss advantages of renewable energy sources - Compare different power generation methods |
What are the different sources of electricity in our environment?
How do renewable energy sources generate electricity? |
- Master Integrated Science pg. 134 - Images of electricity sources - Digital devices - Master Integrated Science pg. 135 - Digital resources - Power generation diagrams |
- Observation
- Oral questions
- Practical work
- Written tests - Assessment rubrics - Oral questions |
|
3 | 4 |
Force and Energy
|
Electrical Energy - Wind, nuclear and other power sources
|
By the end of the
lesson, the learner
should be able to:
- Explain wind power generation - Understand nuclear power basics - Identify fossil fuels and biomass as energy sources |
- Study wind turbine operations - Learn about nuclear power generation - Investigate tidal wave power - Research fossil fuels and biomass energy |
How do different technologies convert natural resources into electricity?
|
- Master Integrated Science pg. 136 - Energy conversion charts - Reference materials |
- Checklist
- Anecdotal records
- Written assignments
|
|
3 | 5 |
Force and Energy
|
Electrical Energy - Electrical cells and batteries
|
By the end of the
lesson, the learner
should be able to:
- Identify electrical cells and batteries - Understand how batteries store and release energy - Recognize positive and negative terminals |
- Examine electrical cells and identify terminals - Study battery structure and function - Practice identifying positive and negative terminals - Discuss battery safety measures |
How do electrical cells and batteries provide electricity?
|
- Master Integrated Science pg. 137 - Electrical cells - Battery samples |
- Practical work
- Observation schedule
- Safety checklist
|
|
4 | 1 |
Force and Energy
|
Electrical Energy - Flow of electric current in series circuits
Electrical Energy - Flow of electric current in parallel circuits |
By the end of the
lesson, the learner
should be able to:
- Demonstrate flow of electric current in series circuits - Set up simple series circuits - Understand circuit continuity |
- Set up simple electrical circuits in series - Use dry cells, connecting wires, switches and bulbs - Observe what happens in each circuit setup - Draw sketches of circuit arrangements |
How does electric current flow in series circuits?
|
- Master Integrated Science pg. 138
- Electrical apparatus - Circuit materials - Master Integrated Science pg. 139 - Electrical components - Circuit diagrams |
- Assessment rubrics
- Practical work
- Observation
|
|
4 | 2-3 |
Force and Energy
|
Electrical Energy - Understanding electrical circuits
Electrical Energy - Series and parallel arrangements |
By the end of the
lesson, the learner
should be able to:
- Define electrical circuits - Distinguish between open and closed circuits - Explain the role of switches - Compare series and parallel arrangements - Predict circuit behavior - Understand current flow patterns |
- Study electrical circuit components - Identify positive and negative terminals - Practice opening and closing circuits with switches - Analyze circuit diagrams - Classify circuits as series or parallel - Analyze effects of removing bulbs from circuits - Compare brightness of bulbs in different arrangements - Draw various circuit configurations |
What makes an electrical circuit work effectively?
How do series and parallel arrangements affect circuit performance? |
- Master Integrated Science pg. 140 - Circuit analysis materials - Switch demonstrations - Master Integrated Science pg. 141 - Circuit comparison charts - Analysis worksheets |
- Checklist
- Oral questions
- Circuit testing
- Assessment rubrics - Problem solving - Circuit analysis |
|
4 | 4 |
Force and Energy
|
Electrical Energy - Common electrical appliances
|
By the end of the
lesson, the learner
should be able to:
- Identify common electrical appliances - Categorize appliances by function - Appreciate the role of electricity in daily life |
- Write names of electrical appliances on flashcards - Exchange flashcards with classmates - Identify appliances in pictures - Find appliances used in different locations |
What electrical appliances do we use in daily life?
|
- Master Integrated Science pg. 142 - Appliance pictures - Flashcards |
- Observation
- Practical work
- Oral questions
|
|
4 | 5 |
Force and Energy
|
Electrical Energy - Safety measures with electrical appliances
|
By the end of the
lesson, the learner
should be able to:
- Identify safety measures for electrical appliances - Recognize electrical hazards - Practice safe handling procedures |
- Complete statements about safety measures - Analyze scenarios with electrical hazards - Discuss actions for electrical emergencies - Search for safety information |
How can we safely handle electrical appliances?
|
- Master Integrated Science pg. 143 - Safety guidelines - Emergency procedures |
- Written tests
- Safety demonstrations
- Checklist
|
|
5 | 1 |
Force and Energy
|
Electrical Energy - Electrical safety in daily life
Electrical Energy - Uses of electricity in daily life |
By the end of the
lesson, the learner
should be able to:
- Apply electrical safety in real situations - Recognize dangerous electrical conditions - Take appropriate safety actions |
- Read safety precautions on electrical appliances - Discuss safety with parents or guardians - Write articles on electrical safety - Practice emergency responses |
Why is electrical safety important in daily life?
|
- Master Integrated Science pg. 144
- Safety manuals - Emergency resources - Master Integrated Science pg. 145 - Usage examples - Modern life illustrations |
- Assessment rubrics
- Safety projects
- Community feedback
|
|
5 | 2-3 |
Force and Energy
|
Electrical Energy - Integration and application
Electrical Energy - Review and assessment |
By the end of the
lesson, the learner
should be able to:
- Integrate knowledge of electrical energy - Apply electrical concepts to solve problems - Design simple electrical solutions - Demonstrate mastery of electrical energy concepts - Identify learning gaps - Plan for improvement |
- Complete comprehensive electrical energy questions - Design simple circuits for specific purposes - Solve electrical problems - Connect electrical knowledge to other subjects - Complete summative assessment on electrical energy - Review performance and identify strengths - Address areas needing improvement - Set goals for continued learning |
How can electrical energy knowledge be applied to solve real problems?
What have I learned about electrical energy and how can I improve? |
- Master Integrated Science pg. 145 - Problem-solving materials - Design challenges - Assessment papers - Performance reviews - Improvement plans |
- Project assessment
- Problem solving
- Design evaluation
- Summative assessment - Self-evaluation - Teacher feedback |
|
5 | 4 |
Force and Energy
|
Electrical Energy - Extension and research
|
By the end of the
lesson, the learner
should be able to:
- Research advanced electrical concepts - Explore careers in electrical engineering - Demonstrate leadership in electrical safety |
- Research current developments in electrical energy - Explore careers in electrical fields - Create electrical safety campaigns - Mentor younger students on electrical concepts |
How can electrical energy knowledge contribute to future careers and community safety?
|
- Advanced electrical resources - Career information - Research tools |
- Research projects
- Career exploration
- Community service assessment
|
|
5 | 5 |
Force and Energy
|
Electrical Energy - Innovation and creativity
|
By the end of the
lesson, the learner
should be able to:
- Design innovative electrical solutions - Think creatively about electrical applications - Demonstrate entrepreneurial thinking |
- Design solutions for electrical problems in school/community - Create models of innovative electrical devices - Present creative electrical ideas - Develop business plans for electrical innovations |
How can I use creativity and innovation to solve electrical energy challenges?
|
- Innovation materials - Design supplies - Presentation tools |
- Innovation assessment
- Creativity evaluation
- Entrepreneurship skills
|
|
6 | 1 |
Force and Energy
|
Magnetism - Identifying and demonstrating magnetic properties
Magnetism - Demonstrating attraction and repulsion |
By the end of the
lesson, the learner
should be able to:
- Identify magnets and their properties - Demonstrate attractive and repulsive properties - Understand magnetic force |
- Study pictures of magnets and discuss their uses - Use magnets with iron filings and iron nails - Observe attraction when magnet approaches nail - Record observations of magnetic attraction |
What are the basic properties of magnets?
|
- Master Integrated Science pg. 146
- Bar magnets - Iron filings and nails - Master Integrated Science pg. 147 - Two bar magnets - Observation sheets |
- Observation
- Practical work
- Oral questions
|
|
6 | 2-3 |
Force and Energy
|
Magnetism - Directional properties of magnets
Magnetism - Magnetic poles and their identification |
By the end of the
lesson, the learner
should be able to:
- Demonstrate directional properties of magnets - Understand magnetic alignment - Appreciate magnetic navigation principles - Identify magnetic poles - Label north and south poles - Understand pole characteristics |
- Tie thread around center of bar magnet - Suspend magnet from retort stand - Allow magnet to rotate and settle - Observe direction of magnetic alignment - Place bar magnet on iron filings - Observe where iron filings cling most - Suspend magnet and identify north-pointing end - Label north and south poles correctly |
Why do freely suspended magnets point in specific directions?
What are magnetic poles and how can they be identified? |
- Master Integrated Science pg. 148 - Thread and retort stand - Compass for reference - Master Integrated Science pg. 149 - Iron filings - Pole identification materials |
- Checklist
- Observation schedule
- Scientific reasoning
- Practical work - Written tests - Pole identification assessment |
|
6 | 4 |
Force and Energy
|
Magnetism - Magnetic strength and measurement
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate magnetic strength - Compare strength of different magnets - Understand factors affecting magnetic strength |
- Use spring balance to measure magnetic strength - Attach magnets to steel surfaces and measure detachment force - Compare readings for different magnets - Identify strongest magnets |
How can magnetic strength be measured and compared?
|
- Master Integrated Science pg. 150 - Spring balance - Various magnets |
- Assessment rubrics
- Measurement skills
- Data analysis
|
|
6 | 5 |
Force and Energy
|
Magnetism - Basic law of magnetism
|
By the end of the
lesson, the learner
should be able to:
- Understand the basic law of magnetism - Predict magnetic interactions - Apply magnetic principles |
- Bring north pole to south pole of another magnet - Bring north poles together - Bring south poles together - Record all observations and formulate law |
What is the basic law of magnetism?
|
- Master Integrated Science pg. 151 - Multiple bar magnets - Law formulation materials |
- Scientific reasoning
- Law application
- Prediction accuracy
|
|
7 | 1 |
Force and Energy
|
Magnetism - Magnetic and non-magnetic materials
|
By the end of the
lesson, the learner
should be able to:
- Classify materials as magnetic or non-magnetic - Test materials with magnets - Understand material properties |
- Collect various materials from school environment - Test each material with suspended magnet - Classify materials into magnetic and non-magnetic - Create classification table |
How can materials be classified based on their response to magnets?
|
- Master Integrated Science pg. 152 - Collection of materials - Classification tables |
- Practical work
- Classification skills
- Material testing
|
|
7 | 2-3 |
Force and Energy
|
Magnetism - Testing household materials
Magnetism - Uses of magnets in separation Magnetism - Magnets in technology and navigation |
By the end of the
lesson, the learner
should be able to:
- Apply magnetic testing to household items - Extend classification skills - Connect learning to home environment - Understand magnets in speakers and compasses - Appreciate magnetic navigation - Connect magnetism to technology |
- Test household items with parent/guardian permission - Use magnet to classify household materials - Record observations in table format - Share findings with classmates - Explain magnetic demonstrations and magic tricks - Suggest magnetic solutions for practical problems - Study magnetic compass operations - Research technological applications |
What household materials are magnetic or non-magnetic?
How do magnets work in speakers, compasses, and other technologies? |
- Master Integrated Science pg. 153
- Household materials - Home testing permissions - Master Integrated Science pg. 154 - Application examples - Magnetic toys - Master Integrated Science pg. 155 - Magnetic compass - Speaker demonstrations |
- Home-school connection
- Extended classification
- Family involvement
- Assessment rubrics - Technology connections - Research skills |
|
7 | 4 |
Force and Energy
|
Magnetism - Practical applications and problem solving
|
By the end of the
lesson, the learner
should be able to:
- Apply magnetic knowledge to solve problems - Design magnetic solutions - Demonstrate creative thinking |
- Listen to resource person on magnet applications - Create posters on daily life uses of magnets - Solve practical problems using magnets - Design magnetic devices for specific purposes |
How can magnetic knowledge be used to solve real-world problems?
|
- Master Integrated Science pg. 156 - Problem-solving scenarios - Design materials |
- Problem-solving assessment
- Design evaluation
- Creative thinking
|
|
7 | 5 |
Force and Energy
|
Magnetism - Review and integration
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate comprehensive understanding of magnetism - Integrate magnetic concepts - Apply knowledge in new contexts |
- Complete comprehensive magnetism questions - Classify magnetic and non-magnetic materials - Predict magnetic interactions - Solve magnetism problems |
What have I learned about magnetism and its applications?
|
- Master Integrated Science pg. 157 - Review materials - Assessment questions |
- Summative assessment
- Knowledge integration
- Problem solving
|
|
8 | 1 |
Force and Energy
|
Magnetism - Extension and research
|
By the end of the
lesson, the learner
should be able to:
- Research advanced magnetic concepts - Explore magnetic technologies - Demonstrate expertise in magnetism |
- Research electromagnets and magnetic levitation - Study magnetic storage devices - Investigate magnetic medical applications - Create advanced magnetic projects |
How are advanced magnetic technologies changing our world?
|
- Advanced magnetic resources - Research materials - Technology examples |
- Research projects
- Technology analysis
- Advanced applications
|
|
8 | 2-3 |
Force and Energy
|
Magnetism - Innovation and creativity
Force and Energy Integration - Connecting electrical energy and magnetism Force and Energy Integration - Comprehensive review and assessment |
By the end of the
lesson, the learner
should be able to:
- Design innovative magnetic solutions - Think creatively about magnetic applications - Demonstrate entrepreneurial thinking - Demonstrate mastery of entire Force and Energy strand - Apply concepts to complex problems - Show readiness for advanced physics concepts |
- Design magnetic devices for community problems - Create innovative magnetic toys or tools - Develop business plans for magnetic innovations - Present creative magnetic solutions - Complete comprehensive Force and Energy assessment - Solve complex problems involving electricity and magnetism - Demonstrate practical skills in both areas - Reflect on strand learning |
How can I use magnetism to create innovative solutions?
What have I learned about Force and Energy and how will this help in future studies? |
- Innovation materials
- Design supplies - Presentation tools - Integration materials - Electromagnetic examples - Concept mapping tools - Comprehensive assessment materials - Complex problem scenarios - Reflection guides |
- Innovation assessment
- Creativity evaluation
- Entrepreneurship skills
- Summative assessment - Practical skills evaluation - Future readiness assessment |
|
8 | 4 |
Force and Energy
|
Force and Energy Integration - Real-world applications and careers
|
By the end of the
lesson, the learner
should be able to:
- Connect Force and Energy concepts to real-world applications - Explore careers in physics and engineering - Demonstrate leadership in science education |
- Research careers in electrical engineering and physics - Visit local facilities using electrical and magnetic technologies - Create presentations on Force and Energy applications - Mentor younger students on physics concepts |
How can Force and Energy knowledge contribute to careers and community development?
|
- Career information - Field trip resources - Community connections |
- Career exploration
- Community engagement
- Leadership assessment
|
|
8 | 5 |
Force and Energy
|
Force and Energy Integration - Future learning and reflection
|
By the end of the
lesson, the learner
should be able to:
- Reflect on entire Force and Energy strand learning - Set goals for advanced physics study - Demonstrate readiness for STEM pathway |
- Complete comprehensive reflection on Force and Energy learning - Set goals for Senior School physics studies - Create portfolio of best work from strand - Plan for continued STEM education |
How has learning about Force and Energy prepared me for advanced physics studies?
|
- Reflection portfolios - Goal-setting materials - STEM pathway information |
- Portfolio assessment
- Reflection quality
- Goal-setting skills
|
Your Name Comes Here