If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 |
opening exams |
||||||||
2 | 2 |
Living Things and Their Environment
|
Human Excretory System - Components of the excretory system
Human Excretory System - External parts of the skin |
By the end of the
lesson, the learner
should be able to:
- Identify components of the excretory system - Recognize the skin as an excretory organ - Appreciate the importance of waste removal |
- Brainstorm on waste removal in humans - Identify excretory organs (skin, lungs, kidneys) - Discuss the role of excretory system - Compare different excretory organs |
What organs make up the human excretory system?
|
- Master Integrated Science pg. 119
- Charts of excretory system - Digital resources - Master Integrated Science pg. 120 - Hand lenses - Observation sheets |
- Observation
- Oral questions
- Practical work
|
|
2 | 3 |
Living Things and Their Environment
|
Human Excretory System - Structure of the skin
Human Excretory System - Functions of skin parts |
By the end of the
lesson, the learner
should be able to:
- Identify parts of the skin from diagrams - Label epidermis, dermis, sweat glands and ducts - Understand the layered structure of skin |
- Study images and identify labeled parts A to F - Use charts to label parts of human skin - Draw and label parts of human skin - Share work with classmates |
What are the main structural parts of the human skin?
|
- Master Integrated Science pg. 121
- Skin structure charts - Digital devices - Master Integrated Science pg. 122 - Reference materials - Digital resources |
- Assessment rubrics
- Practical work
- Written assignments
|
|
2 | 4 |
Living Things and Their Environment
|
Human Excretory System - Understanding excretion and waste products
Human Excretory System - Parts of the urinary system |
By the end of the
lesson, the learner
should be able to:
- Define excretion - Identify waste products excreted by different organs - Understand the importance of waste removal |
- Complete puzzle on skin parts and functions - Study story of sweating process - Identify waste products from skin, lungs and kidneys - Discuss harmful effects of waste accumulation |
Why is excretion important for the human body?
|
- Master Integrated Science pg. 123
- Puzzle materials - Story completion sheets - Master Integrated Science pg. 124 - Urinary system charts - Digital devices |
- Checklist
- Anecdotal records
- Written tests
|
|
3 | 1 |
Living Things and Their Environment
|
Human Excretory System - Modeling the urinary system
Human Excretory System - Functions of urinary system parts |
By the end of the
lesson, the learner
should be able to:
- Create models of the urinary system - Use locally available materials creatively - Demonstrate understanding through model construction |
- Study models created by other students - Identify materials used in model construction - Collect locally available materials - Construct model of urinary system - Display and observe classmates' models |
How can we create models to show the structure of the urinary system?
|
- Master Integrated Science pg. 125
- Locally available materials - Model construction supplies - Master Integrated Science pg. 126 - Function reference materials - Question cards |
- Portfolio assessment
- Practical work
- Peer evaluation
|
|
3 | 2 |
Living Things and Their Environment
|
Human Excretory System - External parts of the kidney
Human Excretory System - Kidney disorders and their causes |
By the end of the
lesson, the learner
should be able to:
- Identify external parts of the kidney - Label renal artery, renal vein, hilum and renal capsule - Understand kidney structure |
- Study diagram and identify parts marked A to C - Use charts to compare answers - Draw well-labeled diagram of kidney - Search for information on kidney functions |
What are the external parts of the kidney and their functions?
|
- Master Integrated Science pg. 127
- Kidney structure charts - Digital resources - Master Integrated Science pg. 128 - Reference materials - Case study conversations |
- Practical work
- Observation schedule
- Written tests
|
|
3 | 3 |
Living Things and Their Environment
|
Human Excretory System - Prevention of kidney disorders
Human Excretory System - Promoting skin health |
By the end of the
lesson, the learner
should be able to:
- Describe ways to prevent kidney disorders - Develop healthy lifestyle habits - Take responsibility for kidney health |
- Discuss prevention methods for kidney disorders - Listen to resource person on kidney health - Write short notes on prevention strategies - Present findings to classmates |
How can kidney disorders be prevented?
|
- Master Integrated Science pg. 129
- Health promotion materials - Resource person - Master Integrated Science pg. 130 - Health education materials - Digital devices |
- Written tests
- Assessment rubrics
- Observation
|
|
3 | 4 |
Living Things and Their Environment
|
Human Excretory System - Promoting kidney health
Human Excretory System - Developing daily health logs |
By the end of the
lesson, the learner
should be able to:
- Identify practices that promote healthy kidneys - Understand the role of diet and exercise - Develop commitment to kidney health |
- Discuss practices to promote kidney health - Analyze effects of inadequate water intake - Understand dietary advice for kidney health - Search for kidney health information |
What lifestyle practices promote healthy kidneys?
|
- Master Integrated Science pg. 131
- Nutrition information - Health guidelines - Master Integrated Science pg. 132 - Planning templates - Family involvement |
- Oral questions
- Written assignments
- Self-assessment
|
|
4 | 1 |
Living Things and Their Environment
|
Human Excretory System - Integration and health promotion
Human Excretory System - Review and assessment |
By the end of the
lesson, the learner
should be able to:
- Integrate knowledge of excretory system with health practices - Share health knowledge with family - Demonstrate leadership in health promotion |
- Share learning with parents or guardians - Discuss additional health promotion strategies - Connect excretory system to nutrition concepts - Develop health education materials |
How can knowledge of the excretory system benefit families and communities?
|
- Master Integrated Science pg. 133
- Community health resources - Family discussion guides - Assessment papers - Review materials - Health case studies |
- Community feedback
- Health promotion projects
- Presentation assessment
|
|
4 | 2 |
Living Things and Their Environment
|
Human Excretory System - Extension and enrichment
Human Excretory System - Final integration and reflection |
By the end of the
lesson, the learner
should be able to:
- Explore advanced concepts in excretory system function - Research current health issues - Demonstrate expertise in health education |
- Research current topics in kidney and skin health - Prepare health education presentations - Create health promotion campaigns - Mentor younger students on health topics |
How can I use my knowledge to promote health in my community?
|
- Advanced health resources
- Research materials - Presentation tools - Reflection journals - Integration activities - Goal-setting materials |
- Research projects
- Presentation skills
- Community impact assessment
|
|
4 | 3 |
Force and Energy
|
Electrical Energy - Sources of electricity in the environment
Electrical Energy - Solar, hydro-electric and geothermal power |
By the end of the
lesson, the learner
should be able to:
- Identify sources of electricity in the environment - Distinguish between renewable and non-renewable sources - Appreciate the variety of electricity sources |
- Brainstorm on electrical energy uses - Identify sources of electricity at school, home, hospital, market - Study images and identify electricity sources - Discuss sources used for laboratory experiments |
What are the different sources of electricity in our environment?
|
- Master Integrated Science pg. 134
- Images of electricity sources - Digital devices - Master Integrated Science pg. 135 - Digital resources - Power generation diagrams |
- Observation
- Oral questions
- Practical work
|
|
4 | 4 |
Force and Energy
|
Electrical Energy - Wind, nuclear and other power sources
Electrical Energy - Electrical cells and batteries |
By the end of the
lesson, the learner
should be able to:
- Explain wind power generation - Understand nuclear power basics - Identify fossil fuels and biomass as energy sources |
- Study wind turbine operations - Learn about nuclear power generation - Investigate tidal wave power - Research fossil fuels and biomass energy |
How do different technologies convert natural resources into electricity?
|
- Master Integrated Science pg. 136
- Energy conversion charts - Reference materials - Master Integrated Science pg. 137 - Electrical cells - Battery samples |
- Checklist
- Anecdotal records
- Written assignments
|
|
5 |
midterm exam |
||||||||
6 | 1 |
Force and Energy
|
Electrical Energy - Flow of electric current in series circuits
Electrical Energy - Flow of electric current in parallel circuits |
By the end of the
lesson, the learner
should be able to:
- Demonstrate flow of electric current in series circuits - Set up simple series circuits - Understand circuit continuity |
- Set up simple electrical circuits in series - Use dry cells, connecting wires, switches and bulbs - Observe what happens in each circuit setup - Draw sketches of circuit arrangements |
How does electric current flow in series circuits?
|
- Master Integrated Science pg. 138
- Electrical apparatus - Circuit materials - Master Integrated Science pg. 139 - Electrical components - Circuit diagrams |
- Assessment rubrics
- Practical work
- Observation
|
|
6 | 2 |
Force and Energy
|
Electrical Energy - Understanding electrical circuits
|
By the end of the
lesson, the learner
should be able to:
- Define electrical circuits - Distinguish between open and closed circuits - Explain the role of switches |
- Study electrical circuit components - Identify positive and negative terminals - Practice opening and closing circuits with switches - Analyze circuit diagrams |
What makes an electrical circuit work effectively?
|
- Master Integrated Science pg. 140 - Circuit analysis materials - Switch demonstrations |
- Checklist
- Oral questions
- Circuit testing
|
|
6 | 3 |
Force and Energy
|
Electrical Energy - Series and parallel arrangements
Electrical Energy - Common electrical appliances |
By the end of the
lesson, the learner
should be able to:
- Compare series and parallel arrangements - Predict circuit behavior - Understand current flow patterns |
- Classify circuits as series or parallel - Analyze effects of removing bulbs from circuits - Compare brightness of bulbs in different arrangements - Draw various circuit configurations |
How do series and parallel arrangements affect circuit performance?
|
- Master Integrated Science pg. 141
- Circuit comparison charts - Analysis worksheets - Master Integrated Science pg. 142 - Appliance pictures - Flashcards |
- Assessment rubrics
- Problem solving
- Circuit analysis
|
|
6 | 4 |
Force and Energy
|
Electrical Energy - Safety measures with electrical appliances
Electrical Energy - Electrical safety in daily life |
By the end of the
lesson, the learner
should be able to:
- Identify safety measures for electrical appliances - Recognize electrical hazards - Practice safe handling procedures |
- Complete statements about safety measures - Analyze scenarios with electrical hazards - Discuss actions for electrical emergencies - Search for safety information |
How can we safely handle electrical appliances?
|
- Master Integrated Science pg. 143
- Safety guidelines - Emergency procedures - Master Integrated Science pg. 144 - Safety manuals - Emergency resources |
- Written tests
- Safety demonstrations
- Checklist
|
|
7 | 1 |
Force and Energy
|
Electrical Energy - Uses of electricity in daily life
Electrical Energy - Integration and application |
By the end of the
lesson, the learner
should be able to:
- Identify multiple uses of electricity - Appreciate electricity's importance - Connect electricity to modern living |
- State uses of electricity in homes, schools, hospitals, factories - Identify electricity uses in pictures - Name other uses in daily life - Discuss importance of electrical systems |
How does electricity support modern life?
|
- Master Integrated Science pg. 145
- Usage examples - Modern life illustrations - Problem-solving materials - Design challenges |
- Practical work
- Oral questions
- Written assignments
|
|
7 | 2 |
Force and Energy
|
Electrical Energy - Review and assessment
Electrical Energy - Extension and research |
By the end of the
lesson, the learner
should be able to:
- Demonstrate mastery of electrical energy concepts - Identify learning gaps - Plan for improvement |
- Complete summative assessment on electrical energy - Review performance and identify strengths - Address areas needing improvement - Set goals for continued learning |
What have I learned about electrical energy and how can I improve?
|
- Assessment papers
- Performance reviews - Improvement plans - Advanced electrical resources - Career information - Research tools |
- Summative assessment
- Self-evaluation
- Teacher feedback
|
|
7 | 3 |
Force and Energy
|
Electrical Energy - Innovation and creativity
Magnetism - Identifying and demonstrating magnetic properties |
By the end of the
lesson, the learner
should be able to:
- Design innovative electrical solutions - Think creatively about electrical applications - Demonstrate entrepreneurial thinking |
- Design solutions for electrical problems in school/community - Create models of innovative electrical devices - Present creative electrical ideas - Develop business plans for electrical innovations |
How can I use creativity and innovation to solve electrical energy challenges?
|
- Innovation materials
- Design supplies - Presentation tools - Master Integrated Science pg. 146 - Bar magnets - Iron filings and nails |
- Innovation assessment
- Creativity evaluation
- Entrepreneurship skills
|
|
7 | 4 |
Force and Energy
|
Magnetism - Demonstrating attraction and repulsion
Magnetism - Directional properties of magnets |
By the end of the
lesson, the learner
should be able to:
- Demonstrate magnetic attraction and repulsion - Understand interaction between magnets - Predict magnetic behavior |
- Place two bar magnets on flat surface - Bring magnet ends close to each other - Observe and record attraction or repulsion - Reverse magnet ends and observe changes |
How do magnets interact with each other?
|
- Master Integrated Science pg. 147
- Two bar magnets - Observation sheets - Master Integrated Science pg. 148 - Thread and retort stand - Compass for reference |
- Assessment rubrics
- Practical work
- Prediction skills
|
|
8 | 1 |
Force and Energy
|
Magnetism - Magnetic poles and their identification
Magnetism - Magnetic strength and measurement |
By the end of the
lesson, the learner
should be able to:
- Identify magnetic poles - Label north and south poles - Understand pole characteristics |
- Place bar magnet on iron filings - Observe where iron filings cling most - Suspend magnet and identify north-pointing end - Label north and south poles correctly |
What are magnetic poles and how can they be identified?
|
- Master Integrated Science pg. 149
- Iron filings - Pole identification materials - Master Integrated Science pg. 150 - Spring balance - Various magnets |
- Practical work
- Written tests
- Pole identification assessment
|
|
8 | 2 |
Force and Energy
|
Magnetism - Basic law of magnetism
Magnetism - Magnetic and non-magnetic materials |
By the end of the
lesson, the learner
should be able to:
- Understand the basic law of magnetism - Predict magnetic interactions - Apply magnetic principles |
- Bring north pole to south pole of another magnet - Bring north poles together - Bring south poles together - Record all observations and formulate law |
What is the basic law of magnetism?
|
- Master Integrated Science pg. 151
- Multiple bar magnets - Law formulation materials - Master Integrated Science pg. 152 - Collection of materials - Classification tables |
- Scientific reasoning
- Law application
- Prediction accuracy
|
|
8 | 3 |
Force and Energy
|
Magnetism - Testing household materials
Magnetism - Uses of magnets in separation |
By the end of the
lesson, the learner
should be able to:
- Apply magnetic testing to household items - Extend classification skills - Connect learning to home environment |
- Test household items with parent/guardian permission - Use magnet to classify household materials - Record observations in table format - Share findings with classmates |
What household materials are magnetic or non-magnetic?
|
- Master Integrated Science pg. 153
- Household materials - Home testing permissions - Master Integrated Science pg. 154 - Application examples - Magnetic toys |
- Home-school connection
- Extended classification
- Family involvement
|
|
8 | 4 |
Force and Energy
|
Magnetism - Magnets in technology and navigation
Magnetism - Practical applications and problem solving |
By the end of the
lesson, the learner
should be able to:
- Understand magnets in speakers and compasses - Appreciate magnetic navigation - Connect magnetism to technology |
- Explain magnetic demonstrations and magic tricks - Suggest magnetic solutions for practical problems - Study magnetic compass operations - Research technological applications |
How do magnets work in speakers, compasses, and other technologies?
|
- Master Integrated Science pg. 155
- Magnetic compass - Speaker demonstrations - Master Integrated Science pg. 156 - Problem-solving scenarios - Design materials |
- Assessment rubrics
- Technology connections
- Research skills
|
|
9 | 1 |
Force and Energy
|
Magnetism - Review and integration
Magnetism - Extension and research |
By the end of the
lesson, the learner
should be able to:
- Demonstrate comprehensive understanding of magnetism - Integrate magnetic concepts - Apply knowledge in new contexts |
- Complete comprehensive magnetism questions - Classify magnetic and non-magnetic materials - Predict magnetic interactions - Solve magnetism problems |
What have I learned about magnetism and its applications?
|
- Master Integrated Science pg. 157
- Review materials - Assessment questions - Advanced magnetic resources - Research materials - Technology examples |
- Summative assessment
- Knowledge integration
- Problem solving
|
|
9 | 2 |
Force and Energy
|
Magnetism - Innovation and creativity
Force and Energy Integration - Connecting electrical energy and magnetism |
By the end of the
lesson, the learner
should be able to:
- Design innovative magnetic solutions - Think creatively about magnetic applications - Demonstrate entrepreneurial thinking |
- Design magnetic devices for community problems - Create innovative magnetic toys or tools - Develop business plans for magnetic innovations - Present creative magnetic solutions |
How can I use magnetism to create innovative solutions?
|
- Innovation materials
- Design supplies - Presentation tools - Integration materials - Electromagnetic examples - Concept mapping tools |
- Innovation assessment
- Creativity evaluation
- Entrepreneurship skills
|
|
9 | 3 |
Force and Energy
|
Force and Energy Integration - Comprehensive review and assessment
Force and Energy Integration - Real-world applications and careers |
By the end of the
lesson, the learner
should be able to:
- Demonstrate mastery of entire Force and Energy strand - Apply concepts to complex problems - Show readiness for advanced physics concepts |
- Complete comprehensive Force and Energy assessment - Solve complex problems involving electricity and magnetism - Demonstrate practical skills in both areas - Reflect on strand learning |
What have I learned about Force and Energy and how will this help in future studies?
|
- Comprehensive assessment materials
- Complex problem scenarios - Reflection guides - Career information - Field trip resources - Community connections |
- Summative assessment
- Practical skills evaluation
- Future readiness assessment
|
|
9 | 4 |
Force and Energy
|
Force and Energy Integration - Future learning and reflection
|
By the end of the
lesson, the learner
should be able to:
- Reflect on entire Force and Energy strand learning - Set goals for advanced physics study - Demonstrate readiness for STEM pathway |
- Complete comprehensive reflection on Force and Energy learning - Set goals for Senior School physics studies - Create portfolio of best work from strand - Plan for continued STEM education |
How has learning about Force and Energy prepared me for advanced physics studies?
|
- Reflection portfolios - Goal-setting materials - STEM pathway information |
- Portfolio assessment
- Reflection quality
- Goal-setting skills
|
Your Name Comes Here