If this scheme pleases you, click here to download.
| WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Scientific Investigation
|
Introduction to Integrated Science - Components of Integrated Science
|
By the end of the
lesson, the learner
should be able to:
- Define the term Integrated Science - Identify the three components of Integrated Science - Show interest in learning about science components |
- Brainstorm on the components of Integrated Science in groups
- Use charts to identify Physics, Chemistry and Biology - Discuss the meaning of Integrated Science - Draw and label a diagram showing the three components |
How does integration help us understand science better?
|
- Master Integrated Science pg. 1
- Charts showing science components - Digital resources |
- Observation
- Oral questions
- Written assignments
|
|
| 2 | 2 |
Scientific Investigation
|
Introduction to Integrated Science - Career opportunities
|
By the end of the
lesson, the learner
should be able to:
- Identify science-related careers - Explain pathways in STEM education - Show interest in science careers |
- Create a career chart using available materials
- Research science careers using digital devices - Interview a science professional - Display career information |
What career opportunities does science offer?
|
- Master Integrated Science pg. 7
- Career magazines - Digital devices |
- Career chart assessment
- Interview reports
- Presentations
|
|
| 2 | 3 |
Scientific Investigation
|
Introduction to Integrated Science - Career opportunities
|
By the end of the
lesson, the learner
should be able to:
- Identify science-related careers - Explain pathways in STEM education - Show interest in science careers |
- Create a career chart using available materials
- Research science careers using digital devices - Interview a science professional - Display career information |
What career opportunities does science offer?
|
- Master Integrated Science pg. 7
- Career magazines - Digital devices |
- Career chart assessment
- Interview reports
- Presentations
|
|
| 2 | 4 |
Scientific Investigation
|
Introduction to Integrated Science - STEM pathways
|
By the end of the
lesson, the learner
should be able to:
- Explain STEM pathway components - Identify senior school science options - Appreciate the importance of STEM education |
- Study STEM pathway diagram
- Discuss Pure Sciences, Applied Sciences, and Technical Engineering - Create a pathway flow chart - Share findings with peers |
How does Integrated Science prepare us for senior school?
|
- Master Integrated Science pg. 8
- STEM pathway charts - Manila papers |
- Flow chart creation
- Peer discussions
- Written assignments
|
|
| 2 | 5 |
Scientific Investigation
|
Laboratory Safety - Defining a laboratory
|
By the end of the
lesson, the learner
should be able to:
- Define the term laboratory - Identify places where laboratories are found - Appreciate the importance of laboratories |
- Visit the school laboratory
- Discuss what a laboratory is used for - Identify different types of laboratories - Share experiences about laboratory visits |
What is a laboratory and why is it important?
|
- Master Integrated Science pg. 13
- School laboratory - Pictures of laboratories |
- Practical observations
- Oral questions
- Written definitions
|
|
| 3 | 1 |
Scientific Investigation
|
Laboratory Safety - Common hazards and symbols
|
By the end of the
lesson, the learner
should be able to:
- Identify common laboratory hazards - Recognize hazard symbols - Show concern for laboratory safety |
- Observe hazard symbols on chemical containers
- Draw and name different hazard symbols - Discuss the meaning of each symbol - Create a safety symbols chart |
What do laboratory hazard symbols tell us?
|
- Master Integrated Science pg. 14
- Chemical containers with labels - Drawing materials |
- Symbol identification
- Chart creation
- Practical work
|
|
| 3 | 2 |
Scientific Investigation
|
Laboratory Safety - Common hazards and symbols
|
By the end of the
lesson, the learner
should be able to:
- Identify common laboratory hazards - Recognize hazard symbols - Show concern for laboratory safety |
- Observe hazard symbols on chemical containers
- Draw and name different hazard symbols - Discuss the meaning of each symbol - Create a safety symbols chart |
What do laboratory hazard symbols tell us?
|
- Master Integrated Science pg. 14
- Chemical containers with labels - Drawing materials |
- Symbol identification
- Chart creation
- Practical work
|
|
| 3 | 3 |
Scientific Investigation
|
Laboratory Safety - Common hazards and symbols
|
By the end of the
lesson, the learner
should be able to:
- Identify common laboratory hazards - Recognize hazard symbols - Show concern for laboratory safety |
- Observe hazard symbols on chemical containers
- Draw and name different hazard symbols - Discuss the meaning of each symbol - Create a safety symbols chart |
What do laboratory hazard symbols tell us?
|
- Master Integrated Science pg. 14
- Chemical containers with labels - Drawing materials |
- Symbol identification
- Chart creation
- Practical work
|
|
| 3 | 4 |
Scientific Investigation
|
Laboratory Safety - Flammable substances
|
By the end of the
lesson, the learner
should be able to:
- Identify flammable substances - Explain safety measures for flammable materials - Practice safe handling of such substances |
- Identify the flammable symbol
- Discuss substances that catch fire easily - Practice proper storage methods - Demonstrate safe handling procedures |
How should we handle substances that catch fire easily?
|
- Master Integrated Science pg. 15
- Flammable substance containers - Safety equipment |
- Practical demonstrations
- Safety practice assessment
- Oral questions
|
|
| 3 | 5 |
Scientific Investigation
|
Laboratory Safety - Flammable substances
|
By the end of the
lesson, the learner
should be able to:
- Identify flammable substances - Explain safety measures for flammable materials - Practice safe handling of such substances |
- Identify the flammable symbol
- Discuss substances that catch fire easily - Practice proper storage methods - Demonstrate safe handling procedures |
How should we handle substances that catch fire easily?
|
- Master Integrated Science pg. 15
- Flammable substance containers - Safety equipment |
- Practical demonstrations
- Safety practice assessment
- Oral questions
|
|
| 4 | 1 |
Scientific Investigation
|
Laboratory Safety - Corrosive substances
|
By the end of the
lesson, the learner
should be able to:
- Identify corrosive substances - Explain the effects of corrosive materials - Practice safe handling of corrosive substances |
- Identify the corrosive symbol
- Discuss damage caused by corrosive substances - Practice emergency procedures - Demonstrate proper storage |
What happens when corrosive substances touch our skin?
|
- Master Integrated Science pg. 16
- Corrosive warning labels - Safety equipment |
- Emergency procedure practice
- Safety demonstrations
- Oral assessments
|
|
| 4 | 2 |
Scientific Investigation
|
Laboratory Safety - Causes of laboratory accidents
|
By the end of the
lesson, the learner
should be able to:
- Identify common causes of laboratory accidents - Explain how accidents occur - Develop awareness to prevent accidents |
- Discuss common laboratory accidents
- Analyze case studies of laboratory incidents - Identify unsafe practices - Create an accident prevention checklist |
How do accidents happen in the laboratory?
|
- Master Integrated Science pg. 17
- Case study materials - Accident report forms |
- Case study analysis
- Checklist creation
- Group discussions
|
|
| 4 | 3 |
Scientific Investigation
|
Laboratory Safety - Causes of laboratory accidents
|
By the end of the
lesson, the learner
should be able to:
- Identify common causes of laboratory accidents - Explain how accidents occur - Develop awareness to prevent accidents |
- Discuss common laboratory accidents
- Analyze case studies of laboratory incidents - Identify unsafe practices - Create an accident prevention checklist |
How do accidents happen in the laboratory?
|
- Master Integrated Science pg. 17
- Case study materials - Accident report forms |
- Case study analysis
- Checklist creation
- Group discussions
|
|
| 4 | 4 |
Scientific Investigation
|
Laboratory Safety - Importance of safety measures
|
By the end of the
lesson, the learner
should be able to:
- Explain why laboratory safety is important - Value personal and others' safety - Appreciate the role of safety in learning |
- Discuss benefits of following safety rules
- Analyze consequences of ignoring safety - Create safety promotion materials - Present safety importance to younger students |
Why is it important to follow safety rules in the laboratory?
|
- Master Integrated Science pg. 22
- Safety promotion materials - Presentation equipment |
- Safety presentation assessment
- Material creation evaluation
- Peer teaching assessment
|
|
| 4 | 5 |
Scientific Investigation
|
Laboratory Safety - Importance of safety measures
|
By the end of the
lesson, the learner
should be able to:
- Explain why laboratory safety is important - Value personal and others' safety - Appreciate the role of safety in learning |
- Discuss benefits of following safety rules
- Analyze consequences of ignoring safety - Create safety promotion materials - Present safety importance to younger students |
Why is it important to follow safety rules in the laboratory?
|
- Master Integrated Science pg. 22
- Safety promotion materials - Presentation equipment |
- Safety presentation assessment
- Material creation evaluation
- Peer teaching assessment
|
|
| 5 | 1 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Basic skills in science
|
By the end of the
lesson, the learner
should be able to:
- Define basic skills in science - Identify different science process skills - Appreciate the importance of scientific skills |
- Brainstorm on scientific skills
- Identify skills used in daily activities - Practice observation and classification - Discuss the importance of each skill |
Why are basic skills important in science?
|
- Master Integrated Science pg. 25
- Observable objects - Classification materials |
- Skills demonstration
- Practical observations
- Oral assessments
|
|
| 5 | 2 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Basic skills in science
|
By the end of the
lesson, the learner
should be able to:
- Define basic skills in science - Identify different science process skills - Appreciate the importance of scientific skills |
- Brainstorm on scientific skills
- Identify skills used in daily activities - Practice observation and classification - Discuss the importance of each skill |
Why are basic skills important in science?
|
- Master Integrated Science pg. 25
- Observable objects - Classification materials |
- Skills demonstration
- Practical observations
- Oral assessments
|
|
| 5 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Observation skills
|
By the end of the
lesson, the learner
should be able to:
- Define observation skills - Practice using different senses for observation - Record observations accurately |
- Use all senses to observe objects
- Practice detailed observation techniques - Record observations systematically - Compare observations with classmates |
What can we learn by observing carefully?
|
- Master Integrated Science pg. 26
- Various objects for observation - Observation recording sheets |
- Observation recording assessment
- Accuracy evaluation
- Systematic recording check
|
|
| 5 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Measurement skills
|
By the end of the
lesson, the learner
should be able to:
- Define measurement skills - Use appropriate measuring instruments - Record measurements accurately |
- Practice using rulers and tape measures
- Measure various objects in the classroom - Record measurements in proper units - Compare measurement accuracy |
How do we measure objects accurately?
|
- Master Integrated Science pg. 27
- Rulers and measuring tapes - Objects to measure |
- Measurement accuracy assessment
- Unit usage evaluation
- Recording skills check
|
|
| 5 | 5 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Measurement skills
|
By the end of the
lesson, the learner
should be able to:
- Define measurement skills - Use appropriate measuring instruments - Record measurements accurately |
- Practice using rulers and tape measures
- Measure various objects in the classroom - Record measurements in proper units - Compare measurement accuracy |
How do we measure objects accurately?
|
- Master Integrated Science pg. 27
- Rulers and measuring tapes - Objects to measure |
- Measurement accuracy assessment
- Unit usage evaluation
- Recording skills check
|
|
| 6 | 1 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Classification skills
|
By the end of the
lesson, the learner
should be able to:
- Define classification skills - Practice grouping objects by properties - Create classification systems |
- Sort objects by different characteristics
- Create classification charts - Practice biological classification - Develop personal classification systems |
How do we organize things into groups?
|
- Master Integrated Science pg. 27
- Various objects for sorting - Classification charts |
- Classification accuracy assessment
- Chart creation evaluation
- System development check
|
|
| 6 | 2 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Classification skills
|
By the end of the
lesson, the learner
should be able to:
- Define classification skills - Practice grouping objects by properties - Create classification systems |
- Sort objects by different characteristics
- Create classification charts - Practice biological classification - Develop personal classification systems |
How do we organize things into groups?
|
- Master Integrated Science pg. 27
- Various objects for sorting - Classification charts |
- Classification accuracy assessment
- Chart creation evaluation
- System development check
|
|
| 6 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Heating apparatus identification
|
By the end of the
lesson, the learner
should be able to:
- Identify heating apparatus in the laboratory - Name different heating instruments - Understand the purpose of each heating device |
- Observe different heating apparatus
- Identify Bunsen burners, spirit lamps, and hot plates - Discuss uses of each heating device - Create a chart of heating equipment |
What equipment do we use for heating in the laboratory?
|
- Master Integrated Science pg. 28
- Various heating apparatus - Equipment identification charts |
- Equipment identification assessment
- Chart creation evaluation
- Purpose explanation check
|
|
| 6 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Heating apparatus identification
|
By the end of the
lesson, the learner
should be able to:
- Identify heating apparatus in the laboratory - Name different heating instruments - Understand the purpose of each heating device |
- Observe different heating apparatus
- Identify Bunsen burners, spirit lamps, and hot plates - Discuss uses of each heating device - Create a chart of heating equipment |
What equipment do we use for heating in the laboratory?
|
- Master Integrated Science pg. 28
- Various heating apparatus - Equipment identification charts |
- Equipment identification assessment
- Chart creation evaluation
- Purpose explanation check
|
|
| 6 | 5 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Parts of a Bunsen burner
|
By the end of the
lesson, the learner
should be able to:
- Identify parts of a Bunsen burner - Explain the function of each part - Draw a labeled diagram of a Bunsen burner |
- Examine a real Bunsen burner
- Identify and label each part - Discuss the function of each component - Draw accurate labeled diagrams |
What are the different parts of a Bunsen burner?
|
- Master Integrated Science pg. 30
- Bunsen burner - Labeling materials |
- Diagram labeling assessment
- Function explanation evaluation
- Drawing accuracy check
|
|
| 7 | 1 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Practical skills assessment
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate competency in using all apparatus - Show mastery of safety procedures - Apply measurement skills accurately |
- Complete practical skills stations
- Demonstrate all learned procedures - Apply safety measures consistently - Show measurement competency |
How well can we use laboratory equipment safely and accurately?
|
- Master Integrated Science pg. 25-56
- All apparatus covered - Assessment rubrics |
- Comprehensive practical assessment
- Skills demonstration evaluation
- Safety competency check
|
|
| 7 | 2 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Practical skills assessment
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate competency in using all apparatus - Show mastery of safety procedures - Apply measurement skills accurately |
- Complete practical skills stations
- Demonstrate all learned procedures - Apply safety measures consistently - Show measurement competency |
How well can we use laboratory equipment safely and accurately?
|
- Master Integrated Science pg. 25-56
- All apparatus covered - Assessment rubrics |
- Comprehensive practical assessment
- Skills demonstration evaluation
- Safety competency check
|
|
| 7 | 3 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Review and consolidation
|
By the end of the
lesson, the learner
should be able to:
- Review all concepts covered in the strand - Demonstrate understanding through assessment - Appreciate the importance of scientific investigation |
- Review all sub-strand topics
- Complete comprehensive assessment - Reflect on learning achievements - Plan for future learning |
What have we learned about scientific investigation?
|
- Master Integrated Science pg. 25-56
- Review materials - Assessment papers |
- Comprehensive written assessment
- Reflection evaluation
- Learning progress check
|
|
| 7 | 4 |
Scientific Investigation
|
Laboratory Apparatus and Instruments - Review and consolidation
|
By the end of the
lesson, the learner
should be able to:
- Review all concepts covered in the strand - Demonstrate understanding through assessment - Appreciate the importance of scientific investigation |
- Review all sub-strand topics
- Complete comprehensive assessment - Reflect on learning achievements - Plan for future learning |
What have we learned about scientific investigation?
|
- Master Integrated Science pg. 25-56
- Review materials - Assessment papers |
- Comprehensive written assessment
- Reflection evaluation
- Learning progress check
|
|
| 7 | 5 |
Mixtures, Elements and Compounds
|
Mixtures - Components of Integrated Science as a field of study
|
By the end of the
lesson, the learner
should be able to:
- Define a mixture - Differentiate between homogeneous and heterogeneous mixtures - Show interest in learning about mixtures |
- Brainstorm on the meaning of mixtures
- Discuss examples of mixtures found at home and school - Categorize mixtures as homogeneous or heterogeneous |
How do we identify different types of mixtures in our environment?
|
Master Integrated Science pg. 72
- Digital resources - Internet access |
- Observation
- Oral questions
- Written assignments
|
|
| 8 |
Mid-term |
||||||||
| 9 | 1 |
Mixtures, Elements and Compounds
|
Mixtures - Categorising mixtures as homogenous or heterogeneous
|
By the end of the
lesson, the learner
should be able to:
- Identify mixtures in the environment - Categorise mixtures as homogeneous or heterogeneous - Appreciate the importance of understanding different types of mixtures |
- Take a walk in the school environment to identify mixtures
- Record different types of mixtures observed - Use a table to categorise mixtures as homogeneous or heterogeneous |
What makes a mixture homogeneous or heterogeneous?
|
Master Integrated Science pg. 72
- Exercise books - Environment for observation |
- Practical work
- Observation
- Checklist
|
|
| 9 | 2 |
Mixtures, Elements and Compounds
|
Mixtures - Identifying solute, solvent and solution in mixtures
Mixtures - Separation by evaporation |
By the end of the
lesson, the learner
should be able to:
- Identify solute, solvent and solution in various mixtures - Explain the process of dissolving - Appreciate the concept of solutions in daily life |
- Carry out activity using salt and water to identify solute, solvent and solution
- Observe and record the dissolving process - Discuss observations with peers |
What happens when a solute dissolves in a solvent?
|
Master Integrated Science pg. 74
- Common salt - Water - Beakers - Stirring rods Master Integrated Science pg. 76 - Salt, water - Evaporating dish - Bunsen burner - Tripod stand |
- Practical work
- Observation
- Oral questions
|
|
| 9 | 3 |
Mixtures, Elements and Compounds
|
Mixtures - Separation by crystallisation
|
By the end of the
lesson, the learner
should be able to:
- Explain the crystallisation process - Separate mixtures using crystallisation method - Show appreciation for the crystallisation method |
- Prepare saturated salt solution
- Heat solution gently while stirring - Allow cooling and observe crystal formation - Filter and dry the crystals |
What is the difference between evaporation and crystallisation?
|
Master Integrated Science pg. 78
- Salt, distilled water - Evaporating dish - Filter paper and funnel |
- Practical work
- Observation
- Written tests
|
|
| 9 | 4 |
Mixtures, Elements and Compounds
|
Mixtures - Fractional distillation setup
|
By the end of the
lesson, the learner
should be able to:
- Identify apparatus for fractional distillation - Explain the function of fractionating column - Appreciate the complexity of fractional distillation |
- Identify fractional distillation apparatus
- Discuss the function of glass beads in fractionating column - Compare with simple distillation setup |
What makes fractional distillation different from simple distillation?
|
Master Integrated Science pg. 82
- Fractional distillation apparatus - Digital devices for research |
- Observation
- Oral questions
- Research presentation
|
|
| 9 | 5 |
Mixtures, Elements and Compounds
|
Mixtures - Applications of separation methods in daily life
|
By the end of the
lesson, the learner
should be able to:
- Identify applications of separation methods in industries - Explain real-life uses of separation techniques - Appreciate the importance of separation methods in society |
- Study images showing industrial applications
- Discuss separation methods used in salt production - Research applications using digital devices - Present findings to classmates |
How are separation methods applied in industries and daily life?
|
Master Integrated Science pg. 92
- Digital devices - Industrial application images - Reference materials |
- Research presentation
- Oral questions
- Written tests
|
|
| 10 | 1 |
Mixtures, Elements and Compounds
|
Mixtures - Matching separation methods with applications
|
By the end of the
lesson, the learner
should be able to:
- Match separation methods with appropriate applications - Explain choice of separation method for specific mixtures - Show appreciation for scientific problem-solving |
- Complete table matching activities with separation methods
- Discuss why specific methods are used for particular applications - Analyze real-world separation scenarios |
Which separation method is most suitable for a given mixture?
|
Master Integrated Science pg. 94
- Activity tables - Course book - Reference materials |
- Written assignments
- Assessment rubrics
- Oral questions
|
|
| 10 | 2 |
Mixtures, Elements and Compounds
|
Mixtures - Matching separation methods with applications
|
By the end of the
lesson, the learner
should be able to:
- Match separation methods with appropriate applications - Explain choice of separation method for specific mixtures - Show appreciation for scientific problem-solving |
- Complete table matching activities with separation methods
- Discuss why specific methods are used for particular applications - Analyze real-world separation scenarios |
Which separation method is most suitable for a given mixture?
|
Master Integrated Science pg. 94
- Activity tables - Course book - Reference materials |
- Written assignments
- Assessment rubrics
- Oral questions
|
|
| 10 | 3 |
Mixtures, Elements and Compounds
|
Mixtures - Matching separation methods with applications
|
By the end of the
lesson, the learner
should be able to:
- Match separation methods with appropriate applications - Explain choice of separation method for specific mixtures - Show appreciation for scientific problem-solving |
- Complete table matching activities with separation methods
- Discuss why specific methods are used for particular applications - Analyze real-world separation scenarios |
Which separation method is most suitable for a given mixture?
|
Master Integrated Science pg. 94
- Activity tables - Course book - Reference materials |
- Written assignments
- Assessment rubrics
- Oral questions
|
|
| 10 | 4 |
Mixtures, Elements and Compounds
|
Mixtures - Review of separation methods
|
By the end of the
lesson, the learner
should be able to:
- Summarize all separation methods learned - Compare advantages and disadvantages of different methods - Demonstrate understanding of separation principles |
- Review all separation methods covered
- Create summary charts of separation techniques - Discuss when to use each method - Practice problem-solving with mixture separation |
How do we choose the best separation method for a given situation?
|
Master Integrated Science pg. 72-94
- Summary charts - Previous practical results |
- Written tests
- Observation
- Assessment rubrics
|
|
| 10 | 5 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Introduction to acids and bases
|
By the end of the
lesson, the learner
should be able to:
- Define acids and bases - Identify characteristics of acids and bases - Show interest in learning about acids and bases |
- Brainstorm on acids and bases
- Discuss taste and texture of common substances - Identify acidic and basic substances in daily life - Share experiences with sour and bitter substances |
What makes substances acidic or basic?
|
Master Integrated Science pg. 95
- Common household items - Course book |
- Observation
- Oral questions
- Written assignments
|
|
| 11 | 1 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Using litmus paper to identify acids and bases
|
By the end of the
lesson, the learner
should be able to:
- Use litmus paper to test acids and bases - Classify household solutions as acids or bases - Appreciate the use of indicators in identification |
- Test various household solutions with red and blue litmus papers
- Record color changes in a table - Classify solutions as acids or bases - Discuss results with classmates |
How do we use litmus paper to identify acids and bases?
|
Master Integrated Science pg. 96
- Red and blue litmus papers - Various household solutions - Test tubes |
- Practical work
- Observation schedule
- Assessment rubrics
|
|
| 11 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Using litmus paper to identify acids and bases
|
By the end of the
lesson, the learner
should be able to:
- Use litmus paper to test acids and bases - Classify household solutions as acids or bases - Appreciate the use of indicators in identification |
- Test various household solutions with red and blue litmus papers
- Record color changes in a table - Classify solutions as acids or bases - Discuss results with classmates |
How do we use litmus paper to identify acids and bases?
|
Master Integrated Science pg. 96
- Red and blue litmus papers - Various household solutions - Test tubes |
- Practical work
- Observation schedule
- Assessment rubrics
|
|
| 11 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Using litmus paper to identify acids and bases
|
By the end of the
lesson, the learner
should be able to:
- Use litmus paper to test acids and bases - Classify household solutions as acids or bases - Appreciate the use of indicators in identification |
- Test various household solutions with red and blue litmus papers
- Record color changes in a table - Classify solutions as acids or bases - Discuss results with classmates |
How do we use litmus paper to identify acids and bases?
|
Master Integrated Science pg. 96
- Red and blue litmus papers - Various household solutions - Test tubes |
- Practical work
- Observation schedule
- Assessment rubrics
|
|
| 11 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Resource person on plant extract indicators
|
By the end of the
lesson, the learner
should be able to:
- Explain the use of plant extracts as indicators - Identify plants suitable for indicator preparation - Show appreciation for natural indicators |
- Listen to resource person on plant extract indicators
- Ask questions for clarification - Write notes on key points discussed - Discuss applications of natural indicators |
Why can some plants be used as acid-base indicators?
|
Master Integrated Science pg. 98
- Resource person - Note-taking materials |
- Observation
- Oral questions
- Note-taking assessment
|
|
| 11 | 5 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Resource person on plant extract indicators
|
By the end of the
lesson, the learner
should be able to:
- Explain the use of plant extracts as indicators - Identify plants suitable for indicator preparation - Show appreciation for natural indicators |
- Listen to resource person on plant extract indicators
- Ask questions for clarification - Write notes on key points discussed - Discuss applications of natural indicators |
Why can some plants be used as acid-base indicators?
|
Master Integrated Science pg. 98
- Resource person - Note-taking materials |
- Observation
- Oral questions
- Note-taking assessment
|
|
| 12 | 1 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Preparing indicators from plant extracts
|
By the end of the
lesson, the learner
should be able to:
- Prepare acid-base indicators from plant flowers - Extract colored substances from plant materials - Show interest in natural indicator preparation |
- Collect colored flowers from school environment
- Cut flowers into small pieces - Crush flowers with ethanol to extract color - Filter the extract to obtain colored solution |
How do we extract useful indicators from plants?
|
Master Integrated Science pg. 98
- Plant flowers - Ethanol - Mortar and pestle - Filter paper |
- Practical work
- Assessment rubrics
- Observation
|
|
| 12 | 2 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Solubility of acids and bases
|
By the end of the
lesson, the learner
should be able to:
- Investigate solubility of acids and bases in water - Explain formation of homogeneous mixtures - Show understanding of solution formation |
- Add water to lemon juice and observe mixing
- Add water to baking powder solution and observe - Discuss formation of homogeneous solutions - Compare solubility characteristics |
Why do acids and bases dissolve in water?
|
Master Integrated Science pg. 102
- Acidic and basic solutions - Water - Test tubes - Observation sheets |
- Practical work
- Observation
- Oral questions
|
|
| 12 | 3 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Solubility of acids and bases
|
By the end of the
lesson, the learner
should be able to:
- Investigate solubility of acids and bases in water - Explain formation of homogeneous mixtures - Show understanding of solution formation |
- Add water to lemon juice and observe mixing
- Add water to baking powder solution and observe - Discuss formation of homogeneous solutions - Compare solubility characteristics |
Why do acids and bases dissolve in water?
|
Master Integrated Science pg. 102
- Acidic and basic solutions - Water - Test tubes - Observation sheets |
- Practical work
- Observation
- Oral questions
|
|
| 12 | 4 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Integration and future applications
|
By the end of the
lesson, the learner
should be able to:
- Connect learning to future chemistry studies - Identify career applications of acid-base knowledge - Show enthusiasm for continued learning in chemistry |
- Discuss connections to future chemistry topics
- Explore career paths using acid-base knowledge - Plan investigations for continued learning - Celebrate learning achievements |
How will this knowledge help us in future chemistry studies?
|
Master Integrated Science pg. 95-105
- Career information resources - Future learning pathways |
- Reflection activities
- Career exploration
- Learning celebration
|
|
| 12 | 5 |
Mixtures, Elements and Compounds
|
Acids, Bases and Indicators - Integration and future applications
|
By the end of the
lesson, the learner
should be able to:
- Connect learning to future chemistry studies - Identify career applications of acid-base knowledge - Show enthusiasm for continued learning in chemistry |
- Discuss connections to future chemistry topics
- Explore career paths using acid-base knowledge - Plan investigations for continued learning - Celebrate learning achievements |
How will this knowledge help us in future chemistry studies?
|
Master Integrated Science pg. 95-105
- Career information resources - Future learning pathways |
- Reflection activities
- Career exploration
- Learning celebration
|
|
Your Name Comes Here