Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM II
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Opening and Revision of Term 1 Exam

1 2-3
ORGANIC CHEMISTRY I
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
By the end of the lesson, the learner should be able to:
Define organic chemistry and hydrocarbons
Explain why carbon forms many compounds
Classify hydrocarbons into alkanes, alkenes, and alkynes
Identify the bonding in carbon compounds
Identify natural sources of alkanes
Describe composition of natural gas and biogas
Explain crude oil as major source of alkanes
Describe biogas digester and its operation
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
KLB Secondary Chemistry Form 3, Pages 86-87
1 4
ORGANIC CHEMISTRY I
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods
By the end of the lesson, the learner should be able to:
Explain fractional distillation process
Perform fractional distillation of crude oil
Identify different fractions and their uses
Relate boiling points to molecular size
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
KLB Secondary Chemistry Form 3, Pages 87-89
1 5
ORGANIC CHEMISTRY I
Alkane Series and Homologous Series Concept
By the end of the lesson, the learner should be able to:
Define homologous series using alkanes
Write molecular formulas for first 10 alkanes
Identify characteristics of homologous series
Apply general formula CₙH₂ₙ₊₂ for alkanes
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
Alkane series chart, Molecular formula worksheets, Periodic table
KLB Secondary Chemistry Form 3, Pages 90-92
2 1
ORGANIC CHEMISTRY I
Nomenclature of Alkanes - Straight Chain and Branched
By the end of the lesson, the learner should be able to:
Name straight-chain alkanes using IUPAC rules
Identify parent chains in branched alkanes
Name branched alkanes with substituent groups
Apply systematic naming rules correctly
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
Structural formula charts, IUPAC naming rules poster, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 90-92
2 2
ORGANIC CHEMISTRY I
Isomerism in Alkanes - Structural Isomers
By the end of the lesson, the learner should be able to:
Define isomerism in alkanes
Draw structural isomers of butane and pentane
Distinguish between chain and positional isomerism
Predict number of isomers for given alkanes
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Molecular model kits, Isomerism charts, Structural formula worksheets
KLB Secondary Chemistry Form 3, Pages 92-94
2

Opening Exam

3 1
ORGANIC CHEMISTRY I
Laboratory Preparation of Methane
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of methane
Perform methane preparation experiment safely
Test physical and chemical properties of methane
Write equation for methane preparation
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
KLB Secondary Chemistry Form 3, Pages 94-96
3 2-3
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethane
Physical Properties of Alkanes
By the end of the lesson, the learner should be able to:
Prepare ethane using sodium propanoate and soda lime
Compare preparation methods of methane and ethane
Test properties of ethane gas
Write general equation for alkane preparation
Describe physical properties of alkanes
Explain trends in melting and boiling points
Relate molecular size to physical properties
Compare solubility in different solvents
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
KLB Secondary Chemistry Form 3, Pages 94-96
KLB Secondary Chemistry Form 3, Pages 96-97
3 4
ORGANIC CHEMISTRY I
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life
By the end of the lesson, the learner should be able to:
Write equations for complete and incomplete combustion
Explain substitution reactions with halogens
Describe conditions for halogenation reactions
Name halogenated alkane products
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials
KLB Secondary Chemistry Form 3, Pages 97-98
3 5
ORGANIC CHEMISTRY I
Introduction to Alkenes and Functional Groups
By the end of the lesson, the learner should be able to:
Define alkenes and unsaturation
Identify the C=C functional group
Write general formula for alkenes (CₙH₂ₙ)
Compare alkenes with alkanes
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
Alkene series charts, Molecular models showing double bonds, Functional group posters
KLB Secondary Chemistry Form 3, Pages 100-101
4 1
ORGANIC CHEMISTRY I
Nomenclature of Alkenes
By the end of the lesson, the learner should be able to:
Apply IUPAC rules for naming alkenes
Number carbon chains to give lowest numbers to double bonds
Name branched alkenes with substituents
Distinguish position isomers of alkenes
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 101-102
4 2-3
ORGANIC CHEMISTRY I
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene
By the end of the lesson, the learner should be able to:
Draw structural isomers of alkenes
Distinguish between branching and positional isomerism
Identify geometric isomers in alkenes
Predict isomer numbers for given molecular formulas
Prepare ethene by dehydration of ethanol
Describe role of concentrated sulfuric acid
Set up apparatus safely for ethene preparation
Test physical and chemical properties of ethene
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 102
KLB Secondary Chemistry Form 3, Pages 102-104
4 4
ORGANIC CHEMISTRY I
Alternative Preparation of Ethene and Physical Properties
By the end of the lesson, the learner should be able to:
Describe catalytic dehydration using aluminum oxide
Compare different preparation methods
List physical properties of ethene
Explain trends in alkene physical properties
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
KLB Secondary Chemistry Form 3, Pages 102-104
4 5
ORGANIC CHEMISTRY I
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization
By the end of the lesson, the learner should be able to:
Explain addition reactions due to C=C double bond
Write equations for halogenation of alkenes
Describe hydrogenation and hydrohalogenation
Explain addition mechanism
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
KLB Secondary Chemistry Form 3, Pages 105-107
5 1
ORGANIC CHEMISTRY I
Tests for Alkenes and Uses
By the end of the lesson, the learner should be able to:
Perform chemical tests to identify alkenes
Use bromine water and KMnO₄ as test reagents
List industrial and domestic uses of alkenes
Explain importance in plastic manufacture
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
KLB Secondary Chemistry Form 3, Pages 108-109
5 2-3
ORGANIC CHEMISTRY I
Introduction to Alkynes and Triple Bond
Nomenclature and Isomerism in Alkynes
By the end of the lesson, the learner should be able to:
Define alkynes and triple bond structure
Write general formula for alkynes (CₙH₂ₙ₋₂)
Identify first members of alkyne series
Compare degree of unsaturation in hydrocarbons
Apply IUPAC naming rules for alkynes
Name branched alkynes with substituents
Draw structural isomers of alkynes
Identify branching and positional isomerism
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 109-110
KLB Secondary Chemistry Form 3, Pages 110-111
5 4
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethyne
By the end of the lesson, the learner should be able to:
Prepare ethyne from calcium carbide and water
Set up gas collection apparatus safely
Test physical and chemical properties of ethyne
Write equation for ethyne preparation
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 111-112
5 5
ORGANIC CHEMISTRY I
Physical and Chemical Properties of Alkynes
By the end of the lesson, the learner should be able to:
Describe physical properties of alkynes
Compare alkyne properties with alkenes and alkanes
Write combustion equations for alkynes
Explain addition reactions of alkynes
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
Physical properties charts, Comparison tables, Combustion equation examples
KLB Secondary Chemistry Form 3, Pages 112-113
6 1
ORGANIC CHEMISTRY I
Addition Reactions of Alkynes and Chemical Tests
Uses of Alkynes and Industrial Applications
By the end of the lesson, the learner should be able to:
Write equations for halogenation of alkynes
Describe hydrogenation and hydrohalogenation
Compare reaction rates: alkynes vs alkenes
Perform chemical tests for alkynes
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
KLB Secondary Chemistry Form 3, Pages 113-115
6 2-3
NITROGEN AND ITS COMPOUNDS
Introduction to Nitrogen - Properties and Occurrence
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
By the end of the lesson, the learner should be able to:
Describe position of nitrogen in the periodic table
State electron configuration of nitrogen
Identify natural occurrence of nitrogen
Explain why nitrogen exists as diatomic molecules
Describe isolation of nitrogen from air
Explain fractional distillation of liquid air
Set up apparatus for laboratory isolation
Identify impurities removed during isolation
Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength.
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
KLB Secondary Chemistry Form 3, Pages 119
KLB Secondary Chemistry Form 3, Pages 119-121
6 4
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Prepare nitrogen gas from ammonium compounds
Use sodium nitrite and ammonium chloride method
Test physical and chemical properties of nitrogen
Write equations for nitrogen preparation
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
KLB Secondary Chemistry Form 3, Pages 121-123
6 5
NITROGEN AND ITS COMPOUNDS
Properties and Uses of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Describe physical properties of nitrogen
Explain chemical inertness of nitrogen
Describe reactions at high temperatures
List industrial uses of nitrogen
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
KLB Secondary Chemistry Form 3, Pages 121-123
7 1
NITROGEN AND ITS COMPOUNDS
Nitrogen(I) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate
Test physical and chemical properties
Explain decomposition and oxidizing properties
Describe uses of nitrogen(I) oxide
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
KLB Secondary Chemistry Form 3, Pages 123-125
7 2-3
NITROGEN AND ITS COMPOUNDS
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects
By the end of the lesson, the learner should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid
Observe colorless gas and brown fumes formation
Test reactions with air and iron(II) sulfate
Explain oxidation in air to NO₂
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid
Prepare from thermal decomposition of nitrates
Test properties including equilibrium with N₂O₄
Describe reactions and uses
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
KLB Secondary Chemistry Form 3, Pages 125-127
KLB Secondary Chemistry Form 3, Pages 127-131
7 4
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Ammonia
By the end of the lesson, the learner should be able to:
Prepare ammonia from ammonium salts and alkalis
Set up apparatus with proper gas collection
Test characteristic properties of ammonia
Explain displacement reaction principle
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
KLB Secondary Chemistry Form 3, Pages 131-134
7 5
NITROGEN AND ITS COMPOUNDS
Preparation of Aqueous Ammonia and Solubility
By the end of the lesson, the learner should be able to:
Prepare aqueous ammonia solution
Demonstrate high solubility using fountain experiment
Explain alkaline properties of aqueous ammonia
Write equations for ammonia in water
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
KLB Secondary Chemistry Form 3, Pages 134-136
8 1
NITROGEN AND ITS COMPOUNDS
Reactions of Aqueous Ammonia with Metal Ions
By the end of the lesson, the learner should be able to:
Test reactions of aqueous ammonia with various metal ions
Observe precipitate formation and dissolution
Explain complex ion formation
Use reactions for metal ion identification
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
KLB Secondary Chemistry Form 3, Pages 136-138
8 2
NITROGEN AND ITS COMPOUNDS
Chemical Properties of Ammonia - Reactions with Acids and Combustion
By the end of the lesson, the learner should be able to:
Test neutralization reactions with acids
Investigate combustion of ammonia
Examine catalytic oxidation with platinum
Study reducing properties with metal oxides
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
KLB Secondary Chemistry Form 3, Pages 138-140
8

Mid Term Exam

9

Half Term Break

10 1
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Ammonia - The Haber Process
By the end of the lesson, the learner should be able to:
Describe raw materials and their sources
Explain optimum conditions for ammonia synthesis
Draw flow diagram of Haber process
Explain economic considerations and catalyst use
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
KLB Secondary Chemistry Form 3, Pages 140-141
10 2-3
NITROGEN AND ITS COMPOUNDS
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations
Laboratory Preparation of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
List major uses of ammonia
Explain importance as fertilizer
Calculate nitrogen percentages in fertilizers
Compare different nitrogenous fertilizers
Prepare nitric acid from nitrate and concentrated sulfuric acid
Set up all-glass apparatus safely
Explain brown fumes and yellow color
Purify nitric acid by air bubbling
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
KLB Secondary Chemistry Form 3, Pages 141-144
KLB Secondary Chemistry Form 3, Pages 144-145
10 4
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Describe catalytic oxidation process
Explain raw materials and conditions
Draw flow diagram of industrial process
Calculate theoretical yields and efficiency
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
KLB Secondary Chemistry Form 3, Pages 145-147
10 5
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Metals
By the end of the lesson, the learner should be able to:
Test reactions with various metals
Explain absence of hydrogen gas production
Observe formation of nitrogen oxides
Write equations for metal-acid reactions
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
KLB Secondary Chemistry Form 3, Pages 147-150
11 1
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
By the end of the lesson, the learner should be able to:
Test reactions with carbonates and hydrogen carbonates
Test neutralization with metal hydroxides and oxides
Identify products formed
Write balanced chemical equations
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
KLB Secondary Chemistry Form 3, Pages 147-150
11 2-3
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Extraction of Sulphur
Allotropes of Sulphur
Physical Properties of Sulphur - Solubility
By the end of the lesson, the learner should be able to:
Demonstrate strong oxidizing properties
Test reactions with FeSO₄, sulfur, and copper
Observe formation of nitrogen dioxide
Explain electron transfer in oxidation
Define allotropy and allotropes. Prepare rhombic sulphur in the laboratory. Prepare monoclinic sulphur in the laboratory. Compare the properties of rhombic and monoclinic sulphur.
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
Practical work: Experiment 1(a) - Preparation of rhombic sulphur using carbon(IV) sulphide. Practical work: Experiment 1(b) - Preparation of monoclinic sulphur by heating and cooling. Observation: Using hand lens to examine crystal shapes. Discussion: Compare crystal structures and transition temperature.
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
KLB Secondary Chemistry Form 3, Pages 150-151
KLB Secondary Chemistry Form 4, Pages 161-163
11 4
SULPHUR AND ITS COMPOUNDS
Physical Properties of Sulphur - Effect of Heat
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids
By the end of the lesson, the learner should be able to:
Investigate the effect of heat on sulphur. Describe changes in color and viscosity of molten sulphur. Explain the molecular changes occurring during heating. Identify "flowers of sulphur".
Practical work: Experiment 2(b) - Heating sulphur and observing changes. Observation: Color changes from yellow to amber to reddish-brown to black. Testing viscosity by inverting test tube. Demonstration: Sublimation of sulphur vapour. Discussion: Breaking of S8 rings to form long chains.
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
KLB Secondary Chemistry Form 4, Pages 164-165
11 5
SULPHUR AND ITS COMPOUNDS
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides.
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
KLB Secondary Chemistry Form 4, Pages 168-170
12 1
SULPHUR AND ITS COMPOUNDS
Physical and Chemical Properties of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the physical properties of SO2 gas. Test the solubility and acidity of SO Write equations for formation of sulphurous acid. Identify the acidic nature of SO
Practical work: Experiment 5 - Testing color, smell, solubility in water. Testing with dry and moist litmus papers. Universal indicator tests with water and NaOH. Formation of normal and acid salts. Recording observations in Table Safety: Proper ventilation due to toxic nature.
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
KLB Secondary Chemistry Form 4, Pages 171-173
12 2-3
SULPHUR AND ITS COMPOUNDS
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide
Oxidising Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing.
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
KLB Secondary Chemistry Form 4, Pages 173
KLB Secondary Chemistry Form 4, Pages 176-177
12 4
SULPHUR AND ITS COMPOUNDS
Test for Sulphate and Sulphite Ions & Uses of SO2
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry.
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
KLB Secondary Chemistry Form 4, Pages 178-179
12 5
SULPHUR AND ITS COMPOUNDS
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
By the end of the lesson, the learner should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process.
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
KLB Secondary Chemistry Form 4, Pages 179-181
13

End of Term Exam

14

Marking and Closing


Your Name Comes Here


Download

Feedback