If this scheme pleases you, click here to download.
| WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
|---|---|---|---|---|---|---|---|---|
| 1 |
OPENER EXAM |
|||||||
| 2 | 1 |
Angle Properties of a Circle
|
Arc chord segment
|
By the end of the
lesson, the learner
should be able to:
identify an arc, chord and segment |
Discussions
Drawing circles Measuring radii/ diameters/angles Identifying the parts of a circle |
Chart illustrating arc chord and segment
|
KLB Maths Bk2 Pg. 264-278
|
|
| 2 | 2 |
Angle Properties of a Circle
|
Angles subtended by the same arc in the same segment
Angle at the centre and at the circumference |
By the end of the
lesson, the learner
should be able to:
relate and compute angles subtended by an arc of a circle at the circumference |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Chart illustrating Angles subtended by the same arc in same segment are equal
Chart illustrating Angles subtended at the centre by an arc and one subtended at the circumference |
KLB Maths Bk2 Pg. 264-278
|
|
| 2 | 3 |
Angle Properties of a Circle
|
Angles subtended by the diameter at the circumference
Cyclic quadrilateral Cyclic quadrilateral |
By the end of the
lesson, the learner
should be able to:
state the angle in the semi-circle |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts |
KLB Maths Bk2 Pg. 264-278
|
|
| 2 | 4 |
Angle Properties of a Circle
|
Exterior angle property
Problem solving Problem solving |
By the end of the
lesson, the learner
should be able to:
apply the exterior angle property |
Discussions
Drawing circles Measuring radii/diameters/angles Identifying the parts of a circle |
Circles showing the
different parts different parts Past paper questions different parts Past paper questions |
KLB Maths Bk2 Pg. 264-278
|
|
| 2 | 5 |
Quadratic Expressions and Equations
|
Factorisation of quadratic expressions
|
By the end of the
lesson, the learner
should be able to:
Factorize quadratic expressions Write the perfect squares Apply factorization methods to solve problems |
Q/A on revision of linear expressions
Discussions on quadratic expression patterns Solving problems using factorization Demonstrations on factorization techniques Explaining step-by-step methods |
Calculators, charts showing factorization patterns
Calculators, factorization method charts |
KLB Mathematics Book Three Pg 1
|
|
| 2 | 6 |
Quadratic Expressions and Equations
|
Completing squares
Solving quadratic expressions by completing square |
By the end of the
lesson, the learner
should be able to:
Complete the square for quadratic expressions Write expressions in perfect square form Identify missing terms in completing squares |
Q/A on perfect square patterns
Discussions on completing square concept Solving problems by completing squares Demonstrations of completing square method Explaining systematic approach |
Calculators, perfect square charts
Calculators, vertex form examples Calculators, equation solving guides |
KLB Mathematics Book Three Pg 1-2
|
|
| 2 | 7 |
Quadratic Expressions and Equations
|
Solving quadratic expressions by factorization
The quadratic formula The quadratic formula |
By the end of the
lesson, the learner
should be able to:
Solve quadratic expressions by factorization Apply zero product property Choose appropriate factorization method |
Q/A on factorization techniques
Discussions on solving strategies Solving equations using factorization Demonstrations of zero product rule Explaining method selection |
Calculators, method selection charts
Calculators, formula derivation charts Calculators, discriminant interpretation guides |
KLB Mathematics Book Three Pg 7
|
|
| 3 | 1 |
Quadratic Expressions and Equations
|
Formation of quadratic equations
|
By the end of the
lesson, the learner
should be able to:
Form a quadratic equation from word problem Create equations from given roots Apply sum and product of roots |
Q/A on roots and coefficients relationship
Discussions on equation formation Solving word problems leading to equations Demonstrations of equation creation Explaining formation processes |
Calculators, word problem templates
|
KLB Mathematics Book Three Pg 9-10
|
|
| 3 | 2 |
Quadratic Expressions and Equations
|
Graphs of quadratic functions
|
By the end of the
lesson, the learner
should be able to:
Draw a table of the quadratic functions Plot coordinates accurately Construct systematic value tables |
Q/A on coordinate geometry basics
Discussions on table construction Solving plotting problems Demonstrations of systematic plotting Explaining table creation methods |
Graph papers, calculators, plotting guides
Graph papers, calculators, rulers |
KLB Mathematics Book Three Pg 12-15
|
|
| 3 | 3 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of quadratic functions Solve quadratic equations using the graphs Find roots as x-intercepts |
Q/A on graph-equation relationships
Discussions on graphical solutions Solving equations graphically Demonstrations of root finding Explaining intersection concepts |
Graph papers, calculators, rulers
|
KLB Mathematics Book Three Pg 15-17
|
|
| 3 | 4 |
Quadratic Expressions and Equations
|
Graphical solutions of quadratic equation
|
By the end of the
lesson, the learner
should be able to:
Solve quadratic equations using the graphs Verify algebraic solutions graphically Estimate solutions from graphs |
Q/A on solution verification
Discussions on estimation techniques Solving complex graphical problems Demonstrations of verification methods Explaining accuracy in estimation |
Graph papers, calculators, estimation guides
|
KLB Mathematics Book Three Pg 17-19
|
|
| 3 | 5 |
Quadratic Expressions and Equations
Approximations and Errors |
Graphical solutions of simultaneous equations
Computing using calculators |
By the end of the
lesson, the learner
should be able to:
Draw tables for simultaneous equations Find the graphical solutions of simultaneous equations Solve systems involving quadratic and linear equations |
Q/A on simultaneous equation concepts
Discussions on intersection analysis Solving systems of equations Demonstrations of intersection finding Explaining solution interpretation |
Graph papers, calculators, intersection analysis guides
Calculators, operation guides |
KLB Mathematics Book Three Pg 19-21
|
|
| 3 | 6 |
Approximations and Errors
|
Computing using calculators
|
By the end of the
lesson, the learner
should be able to:
Solve basic operations using calculators Perform complex calculations accurately Verify calculator results |
Q/A on calculator accuracy
Discussions on verification methods Solving complex computational problems Demonstrations of result checking Explaining calculation verification |
Calculators, verification worksheets
|
KLB Mathematics Book Three Pg 26-28
|
|
| 3 | 7 |
Approximations and Errors
|
Approximation
|
By the end of the
lesson, the learner
should be able to:
Approximate values by rounding off Round numbers to specified decimal places Apply rounding rules correctly |
Q/A on rounding concepts
Discussions on rounding techniques Solving rounding problems Demonstrations of rounding methods Explaining rounding rules and applications |
Calculators, rounding charts
|
KLB Mathematics Book Three Pg 29-30
|
|
| 4 | 1 |
Approximations and Errors
|
Estimation
Accuracy and errors |
By the end of the
lesson, the learner
should be able to:
Approximate values by truncation Estimate values using appropriate methods Compare estimation techniques |
Q/A on estimation strategies
Discussions on truncation vs rounding Solving estimation problems Demonstrations of truncation methods Explaining when to use different techniques |
Calculators, estimation guides
Calculators, error calculation sheets |
KLB Mathematics Book Three Pg 30
|
|
| 4 | 2 |
Approximations and Errors
|
Percentage error
|
By the end of the
lesson, the learner
should be able to:
Find the percentage error of a given value Calculate percentage error accurately Interpret percentage error results |
Q/A on percentage concepts
Discussions on percentage error meaning Solving percentage error problems Demonstrations of percentage calculations Explaining error interpretation |
Calculators, percentage error worksheets
|
KLB Mathematics Book Three Pg 32-34
|
|
| 4 | 3 |
Approximations and Errors
|
Rounding off error and truncation error
|
By the end of the
lesson, the learner
should be able to:
Find the rounding off error Calculate truncation error Compare rounding and truncation errors |
Q/A on error types
Discussions on error sources Solving rounding and truncation error problems Demonstrations of error comparison Explaining error analysis |
Calculators, error comparison charts
|
KLB Mathematics Book Three Pg 34
|
|
| 4 | 4 |
Approximations and Errors
|
Propagation of errors
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in addition and subtraction Calculate combined errors Apply error propagation rules |
Q/A on error propagation concepts
Discussions on addition/subtraction errors Solving error propagation problems Demonstrations of error combination Explaining propagation principles |
Calculators, error propagation guides
Calculators, verification worksheets |
KLB Mathematics Book Three Pg 35-36
|
|
| 4 | 5 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Calculate relative errors in products Apply multiplication error rules |
Q/A on multiplication error concepts
Discussions on product error calculation Solving multiplication error problems Demonstrations of relative error computation Explaining multiplication error principles |
Calculators, multiplication error guides
|
KLB Mathematics Book Three Pg 36-37
|
|
| 4 | 6 |
Approximations and Errors
|
Propagation of errors in multiplication
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in multiplication Solve complex multiplication error problems Compare different error propagation methods |
Q/A on advanced multiplication errors
Discussions on complex error scenarios Solving challenging multiplication problems Demonstrations of method comparison Explaining optimal error calculation |
Calculators, method comparison charts
|
KLB Mathematics Book Three Pg 36-37
|
|
| 4 | 7 |
Approximations and Errors
|
Propagation of errors in division
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors in division Calculate errors in quotients Apply division error rules |
Q/A on division error concepts
Discussions on quotient error calculation Solving division error problems Demonstrations of division error methods Explaining division error principles |
Calculators, division error worksheets
Calculators, verification guides |
KLB Mathematics Book Three Pg 37-38
|
|
| 5 | 1 |
Approximations and Errors
|
Word problems
|
By the end of the
lesson, the learner
should be able to:
Find the propagation of errors of a word problem Apply error analysis to real-world situations Solve comprehensive error problems |
Q/A on chapter consolidation
Discussions on real-world applications Solving comprehensive word problems Demonstrations of problem-solving strategies Explaining practical error analysis |
Calculators, word problem sets, comprehensive review sheets
|
KLB Mathematics Book Three Pg 39-40
|
|
| 5 | 2 |
Surds
|
Rational and irrational numbers
|
By the end of the
lesson, the learner
should be able to:
Classify numbers as rational and irrational numbers Identify rational and irrational numbers Distinguish between rational and irrational forms |
Q/A on number classification concepts
Discussions on rational vs irrational properties Solving classification problems Demonstrations of number identification Explaining decimal representations |
Calculators, number classification charts
|
KLB Mathematics Book Three Pg 78
|
|
| 5 | 3 |
Surds
|
Order of surds and simplification
Simplification of surds practice |
By the end of the
lesson, the learner
should be able to:
State the order of surds Identify surd orders correctly Simplify surds to lowest terms |
Q/A on surd definition and properties
Discussions on surd order concepts Solving order identification problems Demonstrations of surd simplification Explaining simplification techniques |
Calculators, surd order examples
Calculators, factor trees, simplification worksheets |
KLB Mathematics Book Three Pg 78-79
|
|
| 5 | 4 |
Surds
|
Addition of surds
|
By the end of the
lesson, the learner
should be able to:
Add surds with like terms Combine surds of the same order Simplify surd addition expressions |
Q/A on like term concepts
Discussions on surd addition rules Solving addition problems systematically Demonstrations of combining techniques Explaining when surds can be added |
Calculators, addition rule charts
|
KLB Mathematics Book Three Pg 79-80
|
|
| 5 | 5 |
Surds
|
Subtraction of surds
|
By the end of the
lesson, the learner
should be able to:
Subtract surds with like terms Apply subtraction rules to surds Simplify surd subtraction expressions |
Q/A on subtraction principles
Discussions on surd subtraction methods Solving subtraction problems Demonstrations of systematic approaches Explaining subtraction verification |
Calculators, subtraction worksheets
|
KLB Mathematics Book Three Pg 80
|
|
| 5 | 6 |
Surds
|
Multiplication of surds
Division of surds |
By the end of the
lesson, the learner
should be able to:
Multiply surds of the same order Apply multiplication rules to surds Simplify products of surds |
Q/A on multiplication concepts
Discussions on surd multiplication laws Solving multiplication problems Demonstrations of product simplification Explaining multiplication principles |
Calculators, multiplication rule guides
Calculators, division worksheets |
KLB Mathematics Book Three Pg 80-82
|
|
| 5 | 7 |
Surds
|
Rationalizing the denominator
|
By the end of the
lesson, the learner
should be able to:
Rationalize the denominator of fractions Apply rationalization techniques Simplify expressions with surd denominators |
Q/A on rationalization concepts
Discussions on denominator clearing Solving rationalization problems Demonstrations of conjugate methods Explaining rationalization importance |
Calculators, rationalization guides
|
KLB Mathematics Book Three Pg 85-87
|
|
| 6 | 1 |
Surds
|
Advanced rationalization techniques
|
By the end of the
lesson, the learner
should be able to:
Rationalize complex expressions Apply advanced rationalization methods Handle multiple term denominators |
Q/A on complex rationalization
Discussions on advanced techniques Solving challenging rationalization problems Demonstrations of sophisticated methods Explaining complex denominator handling |
Calculators, advanced technique sheets
|
KLB Mathematics Book Three Pg 85-87
|
|
| 6 | 2 |
Further Logarithms
|
Introduction
Laws of logarithms |
By the end of the
lesson, the learner
should be able to:
Use calculators to find the logarithm of numbers Understand logarithmic notation and concepts Apply basic logarithmic principles |
Q/A on exponential and logarithmic relationships
Discussions on logarithm definition and properties Solving basic logarithm problems Demonstrations of calculator usage Explaining logarithm-exponential connections |
Calculators, logarithm definition charts
Calculators, logarithm law charts |
KLB Mathematics Book Three Pg 89
|
|
| 6 | 3 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Apply advanced logarithmic laws Combine multiple laws in calculations |
Q/A on law mastery and applications
Discussions on power and root laws Solving complex law-based problems Demonstrations of combined law usage Explaining advanced law techniques |
Calculators, advanced law worksheets
|
KLB Mathematics Book Three Pg 90-93
|
|
| 6 | 4 |
Further Logarithms
|
Laws of logarithms
|
By the end of the
lesson, the learner
should be able to:
Use laws of logarithms to solve problems Master all logarithmic laws comprehensively Apply laws to challenging mathematical problems |
Q/A on comprehensive law understanding
Discussions on law selection strategies Solving challenging logarithmic problems Demonstrations of optimal law application Explaining problem-solving approaches |
Calculators, challenging problem sets
|
KLB Mathematics Book Three Pg 90-93
|
|
| 6 | 5 |
Further Logarithms
|
Logarithmic equations and expressions
|
By the end of the
lesson, the learner
should be able to:
Solve the logarithmic equations and expressions Apply algebraic methods to logarithmic equations Verify solutions of logarithmic equations |
Q/A on equation-solving techniques
Discussions on logarithmic equation types Solving basic logarithmic equations Demonstrations of solution methods Explaining verification techniques |
Calculators, equation-solving guides
Calculators, advanced equation worksheets |
KLB Mathematics Book Three Pg 93-95
|
|
| 6 | 6 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to numerical computations Use logarithms for complex calculations |
Q/A on computational applications
Discussions on numerical problem-solving Solving computation-based problems Demonstrations of logarithmic calculations Explaining computational advantages |
Calculators, computation worksheets
|
KLB Mathematics Book Three Pg 95-96
|
|
| 6 | 7 |
Further Logarithms
|
Further computation using logarithms
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithms to intermediate calculations Handle multi-step logarithmic computations |
Q/A on intermediate computational skills
Discussions on multi-step processes Solving intermediate computation problems Demonstrations of systematic approaches Explaining step-by-step methods |
Calculators, intermediate problem sets
|
KLB Mathematics Book Three Pg 95-96
|
|
| 7 |
MIDTERM EXAM |
|||||||
| 8 |
MIDTERM BREAK |
|||||||
| 9 | 1 |
Further Logarithms
|
Further computation using logarithms
Problem solving |
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Master advanced logarithmic computations Apply logarithms to complex mathematical scenarios |
Q/A on advanced computational mastery
Discussions on complex calculation strategies Solving advanced computation problems Demonstrations of sophisticated methods Explaining optimal computational approaches |
Calculators, advanced computation guides
Calculators, comprehensive problem sets |
KLB Mathematics Book Three Pg 95-96
|
|
| 9 | 2 |
Further Logarithms
|
Problem solving
|
By the end of the
lesson, the learner
should be able to:
Solve problems involving logarithms Apply logarithmic concepts to real-world situations Handle practical logarithmic applications |
Q/A on real-world applications
Discussions on practical problem contexts Solving real-world logarithmic problems Demonstrations of practical applications Explaining everyday logarithm usage |
Calculators, real-world application examples
|
KLB Mathematics Book Three Pg 97
|
|
| 9 | 3 |
Commercial Arithmetic
|
Simple interest
|
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Apply simple interest formula Solve basic interest problems |
Q/A on interest concepts and terminology
Discussions on principal, rate, and time Solving basic simple interest problems Demonstrations of formula application Explaining interest calculations |
Calculators, simple interest charts
|
KLB Mathematics Book Three Pg 98-99
|
|
| 9 | 4 |
Commercial Arithmetic
|
Simple interest
Compound interest |
By the end of the
lesson, the learner
should be able to:
Calculate simple interest Solve complex simple interest problems Apply simple interest to real-world situations |
Q/A on advanced simple interest concepts
Discussions on practical applications Solving complex interest problems Demonstrations of real-world scenarios Explaining business applications |
Calculators, real-world problem sets
Calculators, compound interest tables |
KLB Mathematics Book Three Pg 98-101
|
|
| 9 | 5 |
Commercial Arithmetic
|
Compound interest
|
By the end of the
lesson, the learner
should be able to:
Calculate the compound interest Solve advanced compound interest problems Compare simple and compound interest |
Q/A on advanced compounding scenarios
Discussions on investment comparisons Solving complex compound problems Demonstrations of comparison methods Explaining investment decisions |
Calculators, comparison worksheets
|
KLB Mathematics Book Three Pg 102-107
|
|
| 9 | 6 |
Commercial Arithmetic
|
Appreciation
|
By the end of the
lesson, the learner
should be able to:
Calculate the appreciation value of items Apply appreciation concepts Solve appreciation problems |
Q/A on appreciation concepts
Discussions on asset value increases Solving appreciation calculation problems Demonstrations of value growth Explaining appreciation applications |
Calculators, appreciation examples
|
KLB Mathematics Book Three Pg 108
|
|
| 9 | 7 |
Commercial Arithmetic
|
Depreciation
Hire purchase |
By the end of the
lesson, the learner
should be able to:
Calculate the depreciation value of items Apply depreciation methods Solve depreciation problems |
Q/A on depreciation concepts and methods
Discussions on asset value decreases Solving depreciation calculation problems Demonstrations of depreciation methods Explaining business depreciation |
Calculators, depreciation charts
Calculators, hire purchase examples |
KLB Mathematics Book Three Pg 109
|
|
| 10 | 1 |
Commercial Arithmetic
|
Hire purchase
|
By the end of the
lesson, the learner
should be able to:
Find the hire purchase Solve complex hire purchase problems Calculate total costs and interest charges |
Q/A on advanced hire purchase scenarios
Discussions on complex payment structures Solving challenging hire purchase problems Demonstrations of cost analysis Explaining consumer finance decisions |
Calculators, complex hire purchase worksheets
|
KLB Mathematics Book Three Pg 110-112
|
|
| 10 | 2 |
Commercial Arithmetic
Matrices |
Income tax and P.A.Y.E
Introduction and real-life applications |
By the end of the
lesson, the learner
should be able to:
Calculate the income tax Calculate the P.A.Y.E Apply tax calculation methods |
Q/A on tax system concepts
Discussions on income tax and P.A.Y.E systems Solving tax calculation problems Demonstrations of tax computation Explaining taxation principles |
Income tax tables, calculators
Old newspapers with league tables, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 112-117
|
|
| 10 | 3 |
Matrices
|
Order of a matrix and elements
Square matrices, row and column matrices Addition of matrices |
By the end of the
lesson, the learner
should be able to:
Determine the order of given matrices Identify matrix elements by position Use correct notation for matrix elements Distinguish between different matrix types |
Q/A on matrix structure using grid drawings
Discussions on rows and columns using classroom seating Solving element location using coordinate games Demonstrations using drawn grids on blackboard Explaining position notation using class register |
Chalk and blackboard, ruled exercise books, class register
Paper cutouts, chalk and blackboard, counters or bottle tops Counters or stones, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 169-170
|
|
| 10 | 4 |
Matrices
|
Subtraction of matrices
Combined addition and subtraction Scalar multiplication |
By the end of the
lesson, the learner
should be able to:
Subtract matrices of the same order Apply matrix subtraction rules correctly Understand order requirements for subtraction Solve complex matrix subtraction problems |
Q/A on matrix subtraction using simple numbers
Discussions on element-wise subtraction using examples Solving subtraction problems on blackboard Demonstrations using number line concepts Explaining sign changes using practical examples |
Chalk and blackboard, exercise books, number cards made from cardboard
Chalk and blackboard, exercise books, locally made operation cards Beans or stones for grouping, chalk and blackboard, exercise books |
KLB Mathematics Book Three Pg 170-171
|
|
| 10 | 5 |
Matrices
|
Introduction to matrix multiplication
Matrix multiplication (2×2 matrices) |
By the end of the
lesson, the learner
should be able to:
Understand matrix multiplication prerequisites Learn compatibility requirements for multiplication Apply row-by-column multiplication method Calculate simple matrix products |
Q/A on multiplication compatibility using dimensions
Discussions on row-column method using finger tracing Solving basic multiplication using dot product method Demonstrations using physical row-column matching Explaining order requirements using practical examples |
Chalk and blackboard, rulers for tracing, exercise books
Chalk and blackboard, exercise books, homemade grid templates |
KLB Mathematics Book Three Pg 174-176
|
|
| 10 | 6 |
Matrices
|
Matrix multiplication (larger matrices)
|
By the end of the
lesson, the learner
should be able to:
Multiply matrices of various orders Apply multiplication to 3×3 and larger matrices Determine when multiplication is possible Calculate products efficiently |
Q/A on larger matrix multiplication using patterns
Discussions on efficiency techniques using shortcuts Solving advanced problems using systematic methods Demonstrations using organized calculation procedures Explaining general principles using examples |
Chalk and blackboard, large sheets of paper for working, exercise books
|
KLB Mathematics Book Three Pg 176-179
|
|
| 10 | 7 |
Matrices
|
Properties of matrix multiplication
Real-world matrix multiplication applications |
By the end of the
lesson, the learner
should be able to:
Understand non-commutativity of matrix multiplication Apply associative and distributive properties Distinguish between pre and post multiplication Solve problems involving multiplication properties |
Q/A on multiplication properties using counterexamples
Discussions on order importance using practical examples Solving property-based problems using verification Demonstrations using concrete examples Explaining distributive law using expansion |
Chalk and blackboard, exercise books, cardboard for property cards
Chalk and blackboard, local price lists, exercise books |
KLB Mathematics Book Three Pg 174-179
|
|
| 11 | 1 |
Matrices
|
Identity matrix
|
By the end of the
lesson, the learner
should be able to:
Define and identify identity matrices Understand identity matrix properties Apply identity matrices in multiplication Recognize the multiplicative identity role |
Q/A on identity concepts using number 1 analogy
Discussions on multiplicative identity using examples Solving identity problems using pattern recognition Demonstrations using multiplication by 1 concept Explaining diagonal properties using visual patterns |
Chalk and blackboard, exercise books, pattern cards made from paper
|
KLB Mathematics Book Three Pg 182-183
|
|
| 11 | 2 |
Matrices
|
Determinant of 2×2 matrices
|
By the end of the
lesson, the learner
should be able to:
Calculate determinants of 2×2 matrices Apply the determinant formula correctly Understand geometric interpretation of determinants Use determinants to classify matrices |
Q/A on determinant calculation using cross multiplication
Discussions on formula application using memory aids Solving determinant problems using systematic approach Demonstrations using cross pattern method Explaining geometric meaning using area concepts |
Chalk and blackboard, exercise books, crossed sticks for demonstration
|
KLB Mathematics Book Three Pg 183
|
|
| 11 | 3 |
Matrices
|
Inverse of 2×2 matrices - theory
Inverse of 2×2 matrices - practice |
By the end of the
lesson, the learner
should be able to:
Understand the concept of matrix inverse Identify conditions for matrix invertibility Apply the inverse formula for 2×2 matrices Understand singular matrices |
Q/A on inverse concepts using reciprocal analogy
Discussions on invertibility using determinant conditions Solving basic inverse problems using formula Demonstrations using step-by-step method Explaining singular matrices using zero determinant |
Chalk and blackboard, exercise books, fraction examples
Chalk and blackboard, exercise books, scrap paper for verification |
KLB Mathematics Book Three Pg 183-185
|
|
| 11 | 4 |
Matrices
|
Introduction to solving simultaneous equations
|
By the end of the
lesson, the learner
should be able to:
Understand matrix representation of simultaneous equations Identify coefficient and constant matrices Set up matrix equations correctly Recognize the structure of linear systems |
Q/A on equation representation using familiar equations
Discussions on coefficient identification using examples Solving setup problems using systematic approach Demonstrations using equation breakdown method Explaining structure using organized layout |
Chalk and blackboard, exercise books, equation examples from previous topics
|
KLB Mathematics Book Three Pg 188-189
|
|
| 11 | 5 |
Matrices
|
Solving 2×2 simultaneous equations using matrices
|
By the end of the
lesson, the learner
should be able to:
Solve 2×2 simultaneous equations using matrix methods Apply inverse matrix techniques Verify solutions by substitution Compare matrix method with other techniques |
Q/A on matrix solution methods using step-by-step approach
Discussions on solution verification using substitution Solving 2×2 systems using complete method Demonstrations using organized solution process Explaining method advantages using comparisons |
Chalk and blackboard, exercise books, previous elimination method examples
|
KLB Mathematics Book Three Pg 188-190
|
|
| 11 | 6 |
Matrices
|
Advanced simultaneous equation problems
Matrix applications in real-world problems |
By the end of the
lesson, the learner
should be able to:
Solve complex simultaneous equation systems Handle systems with no solution or infinite solutions Interpret determinant values in solution context Apply matrix methods to word problems |
Q/A on complex systems using special cases
Discussions on solution types using geometric interpretation Solving challenging problems using complete analysis Demonstrations using classification methods Explaining geometric meaning using line concepts |
Chalk and blackboard, exercise books, graph paper if available
Chalk and blackboard, local business examples, exercise books |
KLB Mathematics Book Three Pg 188-190
|
|
| 11 | 7 |
Matrices
|
Transpose of matrices
Matrix equation solving |
By the end of the
lesson, the learner
should be able to:
Define and calculate matrix transpose Understand transpose properties Apply transpose operations correctly Solve problems involving transpose |
Q/A on transpose concepts using reflection ideas
Discussions on row-column interchange using visual methods Solving transpose problems using systematic approach Demonstrations using flip and rotate concepts Explaining properties using symmetry ideas |
Chalk and blackboard, exercise books, paper cutouts for demonstration
Chalk and blackboard, exercise books, algebra reference examples |
KLB Mathematics Book Three Pg 170-174
|
|
| 12 |
END TERM EXAMS |
|||||||
| 13 |
MARKING AND SCHOOL CLOSURE |
|||||||
Your Name Comes Here