Home






SCHEME OF WORK
Chemistry
Form 3 2026
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

REPORTING AND REVISION OF CEKENA EXAMS

2 1-5
ORGANIC CHEMISTRY II
Introduction to Alkanols and Nomenclature
By the end of the lesson, the learner should be able to:
Define alkanols and identify functional group
- Apply nomenclature rules for alkanols
- Draw structural formulae of simple alkanols
- Compare alkanols with corresponding alkanes
Q/A: Review alkanes, alkenes from Form 3
- Study functional group -OH concept
- Practice naming alkanols using IUPAC rules
- Complete Table 6.2 - alkanol structures
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books
KLB Secondary Chemistry Form 4, Pages 167-170
2

OPENER EXAMS

2 4
ORGANIC CHEMISTRY II
Isomerism in Alkanols
By the end of the lesson, the learner should be able to:
Explain positional and chain isomerism
- Draw isomers of given alkanols
- Name different isomeric forms
- Classify isomers as primary, secondary, or tertiary
Study positional isomerism examples (propan-1-ol vs propan-2-ol)
- Practice drawing chain isomers
- Exercises on isomer identification and naming
- Discussion on structural differences
Isomer structure charts, molecular models, practice worksheets, student books
KLB Secondary Chemistry Form 4, Pages 170-171
2 4-5
ORGANIC CHEMISTRY II
Isomerism in Alkanols
Laboratory Preparation of Ethanol
By the end of the lesson, the learner should be able to:
Explain positional and chain isomerism
- Draw isomers of given alkanols
- Name different isomeric forms
- Classify isomers as primary, secondary, or tertiary
Describe fermentation process
- Prepare ethanol in laboratory
- Write equation for glucose fermentation
- Explain role of yeast and conditions needed
Study positional isomerism examples (propan-1-ol vs propan-2-ol)
- Practice drawing chain isomers
- Exercises on isomer identification and naming
- Discussion on structural differences
Experiment 6.1: Fermentation of sugar solution with yeast
- Set up apparatus for 2-3 days
- Observe gas evolution
- Test for CO₂ with lime water
- Smell final product
Isomer structure charts, molecular models, practice worksheets, student books
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer
KLB Secondary Chemistry Form 4, Pages 170-171
KLB Secondary Chemistry Form 4, Pages 171-172
3 1
ORGANIC CHEMISTRY II
Industrial Preparation and Physical Properties
Chemical Properties of Alkanols I
Chemical Properties of Alkanols II
By the end of the lesson, the learner should be able to:
Explain hydration of ethene method
- Compare laboratory and industrial methods
- Analyze physical properties of alkanols
- Relate properties to molecular structure
Study ethene hydration using phosphoric acid catalyst
- Compare fermentation vs industrial methods
- Analyze Table 6.3 - physical properties
- Discussion on hydrogen bonding effects
Table 6.3, industrial process diagrams, ethene structure models, property comparison charts
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus
KLB Secondary Chemistry Form 4, Pages 171-173
3 2
ORGANIC CHEMISTRY II
Uses of Alkanols and Health Effects
Introduction to Alkanoic Acids
By the end of the lesson, the learner should be able to:
State various uses of alkanols
- Explain health effects of alcohol consumption
- Discuss methylated spirits
- Analyze alcohol in society
Discussion on alkanol applications as solvents, fuels, antiseptics
- Health effects of alcohol consumption
- Methylated spirits composition
- Social implications
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials
Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books
KLB Secondary Chemistry Form 4, Pages 176-177
3 3
ORGANIC CHEMISTRY II
Laboratory Preparation of Ethanoic Acid
By the end of the lesson, the learner should be able to:
Prepare ethanoic acid by oxidation
- Write equations for preparation
- Set up oxidation apparatus
- Identify product by testing
Experiment 6.3: Oxidize ethanol using acidified KMnO₄
- Set up heating and distillation apparatus
- Collect distillate at 118°C
- Test product properties
Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask
KLB Secondary Chemistry Form 4, Pages 179-180
3 4-5
ORGANIC CHEMISTRY II
Physical and Chemical Properties of Alkanoic Acids
Esterification and Uses of Alkanoic Acids
Introduction to Organic Chemistry and Hydrocarbons
By the end of the lesson, the learner should be able to:
Investigate chemical reactions of ethanoic acid
- Test with various reagents
- Write chemical equations
- Analyze acid strength
Define organic chemistry and hydrocarbons
Explain why carbon forms many compounds
Classify hydrocarbons into alkanes, alkenes, and alkynes
Identify the bonding in carbon compounds
Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases
- Record observations
- Write equations
- Discuss weak acid behavior
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
Carbon models, Hydrocarbon structure charts, Molecular model kits
KLB Secondary Chemistry Form 4, Pages 180-182
KLB Secondary Chemistry Form 3, Pages 86-87
4 1
ORGANIC CHEMISTRY I
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
By the end of the lesson, the learner should be able to:
Identify natural sources of alkanes
Describe composition of natural gas and biogas
Explain crude oil as major source of alkanes
Describe biogas digester and its operation
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
KLB Secondary Chemistry Form 3, Pages 86-87
4 2
ORGANIC CHEMISTRY I
Fractional Distillation of Crude Oil
By the end of the lesson, the learner should be able to:
Explain fractional distillation process
Perform fractional distillation of crude oil
Identify different fractions and their uses
Relate boiling points to molecular size
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
KLB Secondary Chemistry Form 3, Pages 87-89
4 3
ORGANIC CHEMISTRY I
Cracking of Alkanes - Thermal and Catalytic Methods
By the end of the lesson, the learner should be able to:
Define cracking of alkanes
Distinguish between thermal and catalytic cracking
Write equations for cracking reactions
Explain industrial importance of cracking
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
KLB Secondary Chemistry Form 3, Pages 89-90
4 4-5
ORGANIC CHEMISTRY I
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched
Isomerism in Alkanes - Structural Isomers
By the end of the lesson, the learner should be able to:
Define homologous series using alkanes
Write molecular formulas for first 10 alkanes
Identify characteristics of homologous series
Apply general formula CₙH₂ₙ₊₂ for alkanes
Define isomerism in alkanes
Draw structural isomers of butane and pentane
Distinguish between chain and positional isomerism
Predict number of isomers for given alkanes
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits
Molecular model kits, Isomerism charts, Structural formula worksheets
KLB Secondary Chemistry Form 3, Pages 90-92
KLB Secondary Chemistry Form 3, Pages 92-94
5 1
ORGANIC CHEMISTRY I
Laboratory Preparation of Methane
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of methane
Perform methane preparation experiment safely
Test physical and chemical properties of methane
Write equation for methane preparation
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
KLB Secondary Chemistry Form 3, Pages 94-96
5 2
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethane
By the end of the lesson, the learner should be able to:
Prepare ethane using sodium propanoate and soda lime
Compare preparation methods of methane and ethane
Test properties of ethane gas
Write general equation for alkane preparation
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
KLB Secondary Chemistry Form 3, Pages 94-96
5 3
ORGANIC CHEMISTRY I
Physical Properties of Alkanes
By the end of the lesson, the learner should be able to:
Describe physical properties of alkanes
Explain trends in melting and boiling points
Relate molecular size to physical properties
Compare solubility in different solvents
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
KLB Secondary Chemistry Form 3, Pages 96-97
5 4-5
ORGANIC CHEMISTRY I
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups
By the end of the lesson, the learner should be able to:
Write equations for complete and incomplete combustion
Explain substitution reactions with halogens
Describe conditions for halogenation reactions
Name halogenated alkane products
Define alkenes and unsaturation
Identify the C=C functional group
Write general formula for alkenes (CₙH₂ₙ)
Compare alkenes with alkanes
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters
KLB Secondary Chemistry Form 3, Pages 97-98
KLB Secondary Chemistry Form 3, Pages 100-101
6 1
ORGANIC CHEMISTRY I
Nomenclature of Alkenes
By the end of the lesson, the learner should be able to:
Apply IUPAC rules for naming alkenes
Number carbon chains to give lowest numbers to double bonds
Name branched alkenes with substituents
Distinguish position isomers of alkenes
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 101-102
6 2
ORGANIC CHEMISTRY I
Isomerism in Alkenes - Branching and Positional
By the end of the lesson, the learner should be able to:
Draw structural isomers of alkenes
Distinguish between branching and positional isomerism
Identify geometric isomers in alkenes
Predict isomer numbers for given molecular formulas
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
Molecular model kits, Isomerism worksheets, Geometric isomer models
KLB Secondary Chemistry Form 3, Pages 102
6 3
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethene
By the end of the lesson, the learner should be able to:
Prepare ethene by dehydration of ethanol
Describe role of concentrated sulfuric acid
Set up apparatus safely for ethene preparation
Test physical and chemical properties of ethene
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 102-104
6 4-5
ORGANIC CHEMISTRY I
Alternative Preparation of Ethene and Physical Properties
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization
By the end of the lesson, the learner should be able to:
Describe catalytic dehydration using aluminum oxide
Compare different preparation methods
List physical properties of ethene
Explain trends in alkene physical properties
Describe oxidation by KMnO₄ and K₂Cr₂O₇
Explain polymerization of ethene
Define monomers and polymers
Write equations for polymer formation
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
KLB Secondary Chemistry Form 3, Pages 102-104
KLB Secondary Chemistry Form 3, Pages 107-108
7 1
ORGANIC CHEMISTRY I
Tests for Alkenes and Uses
By the end of the lesson, the learner should be able to:
Perform chemical tests to identify alkenes
Use bromine water and KMnO₄ as test reagents
List industrial and domestic uses of alkenes
Explain importance in plastic manufacture
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
KLB Secondary Chemistry Form 3, Pages 108-109
7 2
ORGANIC CHEMISTRY I
Introduction to Alkynes and Triple Bond
By the end of the lesson, the learner should be able to:
Define alkynes and triple bond structure
Write general formula for alkynes (CₙH₂ₙ₋₂)
Identify first members of alkyne series
Compare degree of unsaturation in hydrocarbons
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
KLB Secondary Chemistry Form 3, Pages 109-110
7 3
ORGANIC CHEMISTRY I
Nomenclature and Isomerism in Alkynes
By the end of the lesson, the learner should be able to:
Apply IUPAC naming rules for alkynes
Name branched alkynes with substituents
Draw structural isomers of alkynes
Identify branching and positional isomerism
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 110-111
7 4-5
ORGANIC CHEMISTRY I
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests
Uses of Alkynes and Industrial Applications
By the end of the lesson, the learner should be able to:
Prepare ethyne from calcium carbide and water
Set up gas collection apparatus safely
Test physical and chemical properties of ethyne
Write equation for ethyne preparation
Write equations for halogenation of alkynes
Describe hydrogenation and hydrohalogenation
Compare reaction rates: alkynes vs alkenes
Perform chemical tests for alkynes
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
KLB Secondary Chemistry Form 3, Pages 111-112
KLB Secondary Chemistry Form 3, Pages 113-115
8-9

END YEAR CEKENA EXAMS


Your Name Comes Here


Download

Feedback