If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
GENETICS
|
The concept of variation.
|
By the end of the
lesson, the learner
should be able to:
Define Genetics. Define variation. |
Exposition of new concepts.
Probing questions on some variations in human beings. Observe some variations in human beings such as tongue rolling, finger prints, students? heights, etc. Discussion on the concept of variation. |
Ink pad, hand lenses, white paper. |
KLB BK IV. PP 1-2. |
|
1 | 2-3 |
GENETICS
|
Discontinuous variation.
Continuous variation. |
By the end of the
lesson, the learner
should be able to:
Define discontinuous variation. Define continuous variation. Give examples of characteristics that show continuous variation. |
Observe some discontinuous variations in human beings such as tongue rolling, sex, blood groups, etc.
Discussion on the concept of discontinuous variation. Class activity ; students measure and record their heights; Plotting of frequency-height graph; Analyzing the graph; Discussion with probing questions. |
text book
Metre rules/ tape measure, Graph papers |
KLB BK IV.
P 3. KLB BK IV. PP 3-4 |
|
1 | 4 |
GENETICS
|
Causes of variation.
|
By the end of the
lesson, the learner
should be able to:
Discuss causes of variation. |
Exposition of new concepts.
Discussion with probing questions. |
text book
|
KLB BK IV.
P 4 |
|
1 | 5 |
GENETICS
|
The chromosome.
|
By the end of the
lesson, the learner
should be able to:
Describe the structure of chromosomes. |
Exposition of new concepts.
Probing questions. Discussion. |
text book
|
KLB BK IV. PP 4-5.
|
|
2 | 1 |
GENETICS
|
Chromosomal behaviour during mitosis.
|
By the end of the
lesson, the learner
should be able to:
Describe chromosomal behaviour during mitosis. |
Exposition;
Teacher demonstrations; Drawing diagrams; Detailed discussion. |
Scissors,
Manilla papers, thread, cellotape. |
KLB BK IV. PP 5-6
|
|
2 | 2-3 |
GENETICS
|
Chromosomal behaviour during meiosis.
Genes and DNA. |
By the end of the
lesson, the learner
should be able to:
Describe chromosomal behaviour during meiosis. Describe the structure of genes and DNA. Identify the role of DNA. |
Exposition;
Teacher demonstrations; Drawing diagrams; Detailed discussion. Expository approach. |
Scissors,
Manilla papers, threads, cellotape. Chart- the double helix DNA. |
KLB BK IV. PP 6-7
KLB BK IV. PP 7-8 |
|
2 | 4 |
GENETICS
|
DNA replication.
|
By the end of the
lesson, the learner
should be able to:
Describe DNA replication. Explain the role of DNA in protein synthesis. |
Exposition;
Drawing mRNA strands. |
text book
|
KLB BK IV. PP 9-10
|
|
2 | 5 |
GENETICS
|
First law of heredity.
|
By the end of the
lesson, the learner
should be able to:
Describe Mendel?s experiments. State Mendel?s first law. |
Exposition with explanations.
|
|
KLB BK IV. PP 11-12
|
|
3 | 1 |
GENETICS
|
Monohybrid inheritance.
|
By the end of the
lesson, the learner
should be able to:
Define monohybrid inheritance. Differentiate between genotype and phenotype. Draw diagrams to show genetic crosses. |
Q/A to review Mendel?s first law.
Drawing diagrams to show genetic crosses. Discussion with probing questions. |
text book
|
KLB BK IV. PP 12-14
|
|
3 | 2-3 |
GENETICS
|
Genetic crosses using a punnet square.
Ratios of phenotypes and genotypes. |
By the end of the
lesson, the learner
should be able to:
Show fusion of gametes using a punnet square. Explain the concept of probability in inheritance of characteristics. |
Completing a punnet square;
Brief discussion. Q/A to review phenotypes and genotypes. Simple experiments on probability. Discussion. |
text book
Beans of two different colours, beakers. |
KLB BK IV. PP 14-15
KLB BK IV. PP 15-17 |
|
3 | 4 |
GENETICS
|
Ratios of phenotypes and genotypes.
|
By the end of the
lesson, the learner
should be able to:
Explain the concept of probability in inheritance of characteristics. |
Q/A to review phenotypes and genotypes.
Simple experiments on probability. Discussion. |
Beans of two different colours, beakers.
|
KLB BK IV. PP 15-17
|
|
3 | 5 |
GENETICS
|
Incomplete dominance.
Inheritance of ABO blood groups. |
By the end of the
lesson, the learner
should be able to:
Cite examples of incomplete dominance. Illustrate incomplete dominance with diagrams. Illustrate inheritance of blood groups with diagrams. |
Exposition;
Discussion; Drawing diagrams. Drawing diagrams; Supervised practice on inheritance of blood groups. |
chart
|
KLB BK IV. PP 19-20.
|
|
4 | 1 |
GENETICS
|
Inheritance of Rhesus factor.
|
By the end of the
lesson, the learner
should be able to:
Describe inheritance of Rhesus factor. |
Exposition;
Discussion. |
chart
|
KLB BK IV. PP 21-22
|
|
4 | 2-3 |
GENETICS
|
Determining unknown genotypes.
Sex determination in man. |
By the end of the
lesson, the learner
should be able to:
Determine unknown genotypes using test crosses and selfing crosses. Describe sex determination in man. |
Exposition;
Probing questions; Drawing illustrative diagrams; Discussion. Exposition; Drawing illustrative diagrams; Discussion. |
text book
|
KLB BK IV. PP 22-23
KLB BK IV. PP 23-24 |
|
4 | 4 |
GENETICS
|
Sex-linked genes and traits.
|
By the end of the
lesson, the learner
should be able to:
Identify sex-linked traits in man. Illustrate inheritance of sex-linked traits with diagrams. |
Probing questions;
Drawing illustrative diagrams; Discussion. |
text book
|
KLB BK IV. PP 24-27
|
|
4 | 5 |
GENETICS
|
Non-disjunction.
|
By the end of the
lesson, the learner
should be able to:
Explain effects of non-disjunction as a chromosomal abnormality. |
Exposition of new concepts;
Discussion. |
text book
|
KLB BK IV. PP 30-33
|
|
5 | 1 |
GENETICS
|
Gene mutation.
|
By the end of the
lesson, the learner
should be able to:
Differentiate between chromosomal and gene mutation. Identify types of gene mutation. |
Q/A to review types of chromosomal mutation;
Using sequence models to show chromosomal mutations. Discussion. |
Models to show Chromosomal mutations.
|
KLB BK IV. PP 33-35
|
|
5 | 2-3 |
GENETICS
|
Gene mutation.
Disorders due to gene mutations. |
By the end of the
lesson, the learner
should be able to:
Differentiate between chromosomal and gene mutation. Identify types of gene mutation. Illustrate genetic disorders with diagrams. |
Q/A to review types of chromosomal mutation;
Using sequence models to show chromosomal mutations. Discussion. Discussion on albinism, sickle-cell anaemia, haemophilia, colour blindness. Drawing illustrative diagrams. |
Models to show Chromosomal mutations.
chart |
KLB BK IV. PP 33-35
KLB BK IV. PP 35-38 |
|
5 | 4 |
GENETICS
|
Applications of genetics.
|
By the end of the
lesson, the learner
should be able to:
Identify areas of practical application of genetics. |
Probing questions;
Open discussion; Topic review. |
text book,video
|
KLB BK IV. PP 39-45
|
|
5 | 5 |
EVOLUTION
|
Meaning of evolution.
Theories of origin of life.
|
By the end of the
lesson, the learner
should be able to:
Define evolution. Explain the theories of life. |
Brain storming; Probing questions; Q/A on creation theory; Exposition of chemical theory. |
text book
|
KLB BK IV. PP 49-51
|
|
6 | 1 |
EVOLUTION
|
Evidence for organic evolution.
|
By the end of the
lesson, the learner
should be able to:
Cite evidence for organic evolution. |
Brain storming;
Probing questions; Exposition; Discussion. |
text book
|
KLB BK IV. PP 51-59
|
|
6 | 2-3 |
EVOLUTION
|
Comparative anatomy and homologous structures.
Comparative anatomy and homologous structures. (contd) Convergent evolution and analogous structures. |
By the end of the
lesson, the learner
should be able to:
Define divergent evolution. Give examples of homologous structures. Define divergent evolution. Give examples of homologous structures. Define convergent evolution. Give examples of analogous structures. Give examples of vestigial structures. |
Examine forelimbs of vertebrates;
Discuss adaptations and use of the limbs. Examine forelimbs of vertebrates; Discuss adaptations and use of the limbs. Examine wings of insects; wings of birds / bat. Discuss observations. |
Forelimbs of vertebrates.
Forelimbs of vertebrates. Wings of insects, wings of birds / bat. |
KLB BK IV. PP 59-63
|
|
6 | 4 |
EVOLUTION
|
Convergent evolution and analogous structures.(contd)
|
By the end of the
lesson, the learner
should be able to:
Define convergent evolution. Give examples of analogous structures. Give examples of vestigial structures. |
Examine wings of insects; wings of birds / bat.
Discuss observations. |
Wings of insects, wings of birds / bat.
|
KLB BK IV. PP 63-64
|
|
6 | 5 |
EVOLUTION
|
Larmack?s theory of evolution.
|
By the end of the
lesson, the learner
should be able to:
Explain Larmack?s theory of evolution. |
Expositions and explanations.
|
text book
|
KLB BK IV. P 67
|
|
7 | 1 |
EVOLUTION
|
Darwin?s theory of natural selection.
|
By the end of the
lesson, the learner
should be able to:
Explain Darwin?s theory of natural selection. Cite examples of natural selection in action. |
Expositions and explanations;
Probing questions; Topic review. |
text book
|
KLB BK IV. PP 67-72
|
|
7 | 2-3 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Meaning of stimulus, response and irritability.
Tactic responses.
Tropism and types of tropism. |
By the end of the
lesson, the learner
should be able to:
Define of stimulus, response and irritability. Explain the need for sensitivity and response. Identify types of tactics responses. Identify types of tropism. State differences between tropisms and taxes. |
Brain storming; Exposition; Group experiments-chemotaxis in termites; Discussion. Examine previous plant set ?ups on response to light, gravity; Probing questions and discussion. |
Brad crumbs, termites, dry sand, moth balls. Seedlings, klinostat, corked beaker. |
KLB BK IV. PP 73-74 KLB BK IV. PP 74-78 |
|
7 | 4 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Nastic responses.
|
By the end of the
lesson, the learner
should be able to:
Identify types of nastic responses |
Q/A and discussion.
|
text book
|
KLB BK IV. PP 78-80
|
|
7 | 5 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Role of auxins in tropisms.
|
By the end of the
lesson, the learner
should be able to:
Explain the role of auxins in tropisms. |
Examine previous plant set ?ups on response to light, gravity; contact;
Probing questions and discussion. |
text book
|
KLB BK IV. PP 80-83
|
|
8 |
Mid term |
|||||||
9 | 1 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Response and
Co-ordination in animals.
The nervous system.
|
By the end of the
lesson, the learner
should be able to:
State components of the nervous system. Describe the structure of nerve cells. |
Descriptive and expository approaches. |
Illustrative diagrams. |
KLB BK IV. PP 84-85
|
|
9 | 2-3 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Types of neurons.
The brain.
Reflex actions. |
By the end of the
lesson, the learner
should be able to:
Identify types of neurons. Describe structure of the human brain. Differentiate between simple and conditioned reflex actions. |
Descriptive and expository approaches.
Illustrate a simple reflex arc. Probing questions on differences between simple and conditioned reflex actions. |
Illustrative diagrams.
|
KLB BK IV. PP 85-88
KLB BK IV. PP 88-90 |
|
9 | 4 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Transmission of a nerve impulse.
The endocrine system. |
By the end of the
lesson, the learner
should be able to:
Describe the transmission of a nerve impulse. Identify components of endocrine system. Compare endocrine system. With nervous system. |
Descriptive and expository approaches.
Discussion; tabulate the differences. |
Illustrative diagrams.
|
KLB BK IV. PP 90-93
|
|
9 | 5 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
The mammalian eye.
|
By the end of the
lesson, the learner
should be able to:
Identify major parts of the human eye. Explain image formation and interpretation in the eye. |
Brain storming;
Discussion with probing questions. |
Chart- the human eye.
|
KLB BK IV. PP 93-100
|
|
10 | 1 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Accommodation of the eye.
|
By the end of the
lesson, the learner
should be able to:
Explain the role of ciliary muscles in accommodation of the eye. |
Discussion with probing questions,
Drawing illustrative diagrams. |
Chart- focusing far and near points.
|
KLB BK IV. PP 100-1
|
|
10 | 2-3 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Accommodation of the eye.
Defects of vision and their correction. The human ear. |
By the end of the
lesson, the learner
should be able to:
Explain the role of ciliary muscles in accommodation of the eye. Identify defects of vision. Explain correction of vision defects. Identify major parts of the human ear. |
Discussion with probing questions,
Drawing illustrative diagrams. Detailed discussion with probing questions; Drawing illustrative diagrams. Descriptive and expository approaches. Drawn diagrams. |
Chart- focusing far and near points.
Illustrative diagrams. |
KLB BK IV. PP 100-1
KLB BK IV. PP 101-4 |
|
10 | 4 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Hearing.
Body balance and posture. |
By the end of the
lesson, the learner
should be able to:
Explain how the ear perceives sound. Explain how the ear maintains body balance and posture. |
Descriptive and expository approaches.
|
Illustrative diagrams.
|
KLB BK IV. P 106
|
|
10 | 5 |
RECEPTION, RESPONSE &
CO-ORDINATION
|
Defects of the ear.
|
By the end of the
lesson, the learner
should be able to:
Identify some defects of the ear. |
Descriptive and expository approaches.
|
text book
|
KLB BK IV.
P 108 |
Your Name Comes Here