If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
OPENER EXAMINATIONS |
|||||||
2 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical equations.
|
By the end of the
lesson, the learner
should be able to:
To identify components of chemical equations. |
Review word equations;
Exposition of new concepts with probing questions; Brief discussion. |
text book
|
K.L.B. BOOK IIPP 21-23
|
|
2 | 2-3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical equations.
Balanced chemical equations. |
By the end of the
lesson, the learner
should be able to:
To identify components of chemical equations. To balance chemical equations correctly. |
Review word equations;
Exposition of new concepts with probing questions; Brief discussion. Exposition; Supervised practice. |
text book
|
K.L.B. BOOK IIPP 21-23
K.L.B. BOOK IIPP 24-25 |
|
2 | 4 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.(contd)
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Supervised practice;
Written exercise. |
text book
|
K.L.B. BOOK IIPP 25-8
|
|
3 | 1 |
STRUCTURE & BONDING
|
Chemical bonds.
Ionic bond.
|
By the end of the
lesson, the learner
should be able to:
Describe role of valence electrons in determining chemical bonding. Explain formation of ionic bonding. |
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII.
Q/A: Review group I and group VII elements. Discuss formation of ionic bond. |
text book
|
K.L.B. BOOK IIP54
PP 57-58 |
|
3 | 2-3 |
STRUCTURE & BONDING
|
Ionic bond representation.
Grant ionic structures. |
By the end of the
lesson, the learner
should be able to:
Use dot and cross diagrams to represent ionic bonding. Describe the crystalline ionic compound. Give examples of ionic substances. |
Drawing diagrams of ionic bonds.
Discuss the group ionic structures of NaCl. Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide. |
Chart- dot and cross diagrams.
Models for bonding. Giant sodium chloride model. |
K.L.B. BOOK II P. 58
K.L.B. BOOK II PP 56-58 |
|
3 | 4 |
STRUCTURE & BONDING
|
Physical properties of ionic compounds.
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of ionic compounds. Explain the differences in the physical properties of ionic compounds. |
Analyse tabulated comparative physical properties of ionic compounds.
Teacher asks probing questions. |
text book
|
K.L.B. BOOK IIPP 58-59
|
|
4 | 1 |
STRUCTURE & BONDING
|
Covalent bond.
Co-ordinate bond. |
By the end of the
lesson, the learner
should be able to:
Explain the formation of covalent bond Use dot and cross diagrams to represent covalent bond. To describe the co-ordinate bond To represent co-ordinate bond diagrammatically. |
Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2.
Drawing of dot-and-cross diagrams of covalent bonds. Exposition- teacher explains the nature of co-ordinate bond. Students represent co-ordinate bond diagrammatically. |
text book
|
K.L.B. BOOK II PP 60-63
|
|
4 | 2-3 |
STRUCTURE & BONDING
|
Molecular structure.
Trend in physical properties of molecular structures. |
By the end of the
lesson, the learner
should be able to:
To describe the molecular structure. To give examples of substance exhibiting molecular structure To describe van- der -waals forces. To explain the trend in physical properties of molecular structures. |
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
Discuss comparative physical properties of substances. exhibiting molecular structure. Explain variation in the physical properties. |
text book
Sugar, naphthalene, iodine rhombic sulphur. |
K.L.B. BOOK IIP 65
|
|
4 | 4 |
STRUCTURE & BONDING
|
Giant atomic structure in diamond.
Giant atomic structure in graphite. |
By the end of the
lesson, the learner
should be able to:
To describe giant atomic structure in diamond. To state uses of diamond. To describe giant atomic structure in graphite. To state uses of graphite. |
Diagrammatic representation of diamond.
Discuss uses of diamond. Diagrammatic representation of graphite. Discuss uses of graphite. |
Diagrams in textbooks.
|
K.L.B. BOOK II P 69
|
|
5 | 1 |
STRUCTURE & BONDING
|
Metallic bond.
Uses of some metals.
|
By the end of the
lesson, the learner
should be able to:
To describe mutual electronic forces between electrons and nuclei. To describe metallic bond. To compare physical properties of metals. To state uses of some metals. |
Discussion:
Detailed analysis of comparative physical properties of metals and their uses. Probing questions & brief explanations. |
text book
|
K.L.B. BOOK IIP 70
|
|
5 | 2-3 |
CHEMICAL FAMILIES
|
Alkali metals.
Atomic and ionic radii of alkali metals
|
By the end of the
lesson, the learner
should be able to:
Identify alkali metals. State changes in atomic and ionic radii of alkali metals. |
Q/A to reviews elements of group I and their electronic configuration. Examine a table of elements, their symbols and atomic & ionic radii. Discussion & making deductions from the table. |
The periodic
|
K.L.B. BOOK IIPP 28-29
|
|
5 | 4 |
CHEMICAL FAMILIES
|
Ionisation energy of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State changes in number of energy levels and ionisation energy of alkali metals. |
Examine a table of elements, number of energy levels and their ionization energy.
Discuss the trend deduced from the table. |
text book
|
K.L.B. BOOK II
|
|
6 | 1 |
CHEMICAL FAMILIES
|
Physical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkali metals. |
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion on physical properties of alkali metals. |
Chart ? comparative properties of Li, Na, K.
|
K.L.B. BOOK IIPP 30-31
|
|
6 | 2-3 |
CHEMICAL FAMILIES
|
Physical properties of alkali metals.
Chemical properties of alkali metals. |
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkali metals. To describe reaction of alkali metals with water. |
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion on physical properties of alkali metals. Q/A: Review reaction of metals with water. Writing down chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
Chart ? comparative properties of Li, Na, K.
text book |
K.L.B. BOOK IIPP 30-31
K.L.B. BOOK IIP. 32 |
|
6 | 4 |
CHEMICAL FAMILIES
|
Chemical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkali metals with water. |
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
text book
|
K.L.B. BOOK IIP. 32
|
|
7 | 1 |
CHEMICAL FAMILIES
|
Reaction of alkali metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas. |
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. |
Sodium, chlorine.
|
K.L.B. BOOK IIP. 33
|
|
7 | 2-3 |
CHEMICAL FAMILIES
|
Reaction of alkali metals with chlorine gas.
Compounds of alkali metals. |
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas. Write chemical formulae for compounds of alkali metals. Explain formation of hydroxides, oxides and chlorides of alkali metals. |
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals. Discuss combination of ions of alkali metals with anions. |
Sodium, chlorine.
text book |
K.L.B. BOOK IIP. 33
K.L.B. BOOK II pp 33 |
|
8 |
MIDTERM EXAMINATION AND MIDTERM BREAK |
|||||||
9 | 1 |
CHEMICAL FAMILIES
|
Uses of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State uses of alkali metals. |
Descriptive approach: Teacher elucidates uses of alkali metals.
|
text book
|
K.L.B. BOOK II pp 34
|
|
9 | 2-3 |
CHEMICAL FAMILIES
|
Alkaline Earth metals
Atomic and ionic radii of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
Identify alkaline earth metals. State changes in atomic and ionic radii of alkaline earth metals. |
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii. Make deductions from the table. |
Some alkaline earth metals.
|
K.L.B. BOOK II pp 34
|
|
9 | 4 |
CHEMICAL FAMILIES
|
Physical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkaline earth metals. |
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion of physical properties of alkaline earth metals. |
Some alkaline earth metals.
|
K.L.B. BOOK II P. 35
|
|
10 | 1 |
CHEMICAL FAMILIES
|
Electrical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
To describe electrical properties of alkaline earth metals. |
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge. |
Alkaline earth metals.
|
K.L.B. BOOK IIP. 37
|
|
10 | 2-3 |
CHEMICAL FAMILIES
PROPERTIES AND TRENDS ACROSS PERIOD THREE |
Electrical properties of alkaline earth metals.
Physical properties of elements in periods. |
By the end of the
lesson, the learner
should be able to:
To describe electrical properties of alkaline earth metals. To compare electrical conductivity of elements in period 3 |
Teacher demonstration: -
To show alkaline metals are good conductors of electric charge. Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns. The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
Alkaline earth metals.
The periodic table. |
K.L.B. BOOK IIP. 37
K.L.B. BOOK IIP. 76 |
|
10 | 4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in periods.
|
By the end of the
lesson, the learner
should be able to:
To compare electrical conductivity of elements in period 3 |
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case. Discuss the observations in terms of delocalised electrons. |
The periodic table.
|
K.L.B. BOOK IIP. 76
|
|
11 | 1 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Physical properties of elements in period 3.
|
By the end of the
lesson, the learner
should be able to:
To compare other physical properties of elements across period 3. |
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given. |
The periodic table.
|
K.L.B. BOOK II P. 77
|
|
11 | 2-3 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chemical properties of elements in period 3.
Chemical properties of elements in the third period. Oxides of period 3 elements. |
By the end of the
lesson, the learner
should be able to:
To compare reactions of elements in period 3 with oxygen. To compare reactions of elements in period 3 with water To identify bonds across elements in period 3. To explain chemical behavior of their oxide. |
Q/A: Products of reactions of Na, Mg, Al, P, & S with oxygen.
Discuss the trend in their reactivity; identify basic and acidic oxides. Exercise ? balanced chemical equations for the above reactions. Q/A: Review reaction of sodium, Mg, chlorine, with water. Infer that sodium is most reactive metal; non-metals do not react with water. Comparative analysis, discussion and explanation. |
The periodic table.
|
K.L.B. BOOK II PP. 79-80
K.L.B. BOOK II P. 84 |
|
11 | 4 |
PROPERTIES AND TRENDS ACROSS PERIOD THREE
|
Chlorides of period 3 elements.
|
By the end of the
lesson, the learner
should be able to:
To explain chemical behavior of their chlorides. To describe hydrolysis reaction. |
Comparative analysis, discussion and explanation.
|
The periodic table.
|
K.L.B. BOOK II PP. 77-78
|
|
12 |
END TERM 1 EXAMINATIONS |
|||||||
13 |
CLOSING THE SCHOOL FOR APRIL HOLIDAY |
Your Name Comes Here