Home






SCHEME OF WORK
Biology
Form 4 2024
TERM II
School




To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.











Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
3 1-2
GENETICS
Inheritance of Rhesus factor.
Determining unknown genotypes.
By the end of the lesson, the learner should be able to:
Describe inheritance of Rhesus factor.
Determine unknown genotypes using test crosses and selfing crosses.
Exposition;
Discussion.

Exposition;
Probing questions;
Drawing illustrative diagrams;
Discussion.
chart
text book
KLB BK IV. PP 21-22
KLB BK IV. PP 22-23
3 3
GENETICS
Sex determination in man.
By the end of the lesson, the learner should be able to:
Describe sex determination in man.
Exposition;
Drawing illustrative diagrams;
Discussion.
KLB BK IV. PP 23-24
3 4
GENETICS
Sex-linked genes and traits.
By the end of the lesson, the learner should be able to:
Identify sex-linked traits in man.
Illustrate inheritance of sex-linked traits with diagrams.
Probing questions;
Drawing illustrative diagrams;
Discussion.
text book
KLB BK IV. PP 24-27
3 5
GENETICS
Sex-linked genes and traits.
By the end of the lesson, the learner should be able to:
Identify sex-linked traits in man.
Illustrate inheritance of sex-linked traits with diagrams.
Probing questions;
Drawing illustrative diagrams;
Discussion.
text book
KLB BK IV. PP 24-27
4 1-2
GENETICS
Non-disjunction.
Gene mutation.
By the end of the lesson, the learner should be able to:
Explain effects of non-disjunction as a chromosomal abnormality.
Differentiate between chromosomal and gene mutation.
Identify types of gene mutation.
Exposition of new concepts;
Discussion.

Q/A to review types of chromosomal mutation;
Using sequence models to show chromosomal mutations.
Discussion.
text book
Models to show Chromosomal mutations.
KLB BK IV. PP 30-33
KLB BK IV. PP 33-35
4 3
GENETICS
Gene mutation.
By the end of the lesson, the learner should be able to:
Differentiate between chromosomal and gene mutation.
Identify types of gene mutation.
Q/A to review types of chromosomal mutation;
Using sequence models to show chromosomal mutations.
Discussion.
Models to show Chromosomal mutations.
KLB BK IV. PP 33-35
4 4
GENETICS
Disorders due to gene mutations.
By the end of the lesson, the learner should be able to:
Illustrate genetic disorders with diagrams.
Discussion on albinism, sickle-cell anaemia, haemophilia, colour blindness.
Drawing illustrative diagrams.
chart
KLB BK IV. PP 35-38
4 5
GENETICS
Applications of genetics.
By the end of the lesson, the learner should be able to:
Identify areas of practical application of genetics.
Probing questions;
Open discussion;
Topic review.
text book,video
KLB BK IV. PP 39-45
5 1-2
EVOLUTION
Meaning of evolution. Theories of origin of life.
By the end of the lesson, the learner should be able to:


Define evolution.
Explain the theories of life.


Brain storming;
Probing questions;
Q/A on creation theory;
Exposition of chemical theory.
text book
KLB BK IV. PP 49-51
5 3
EVOLUTION
Evidence for organic evolution.
By the end of the lesson, the learner should be able to:
Cite evidence for organic evolution.
Brain storming;
Probing questions;
Exposition;
Discussion.
text book
KLB BK IV. PP 51-59
5 4
EVOLUTION
Comparative anatomy and homologous structures.
By the end of the lesson, the learner should be able to:
Define divergent evolution.
Give examples of homologous structures.
Examine forelimbs of vertebrates;
Discuss adaptations and use of the limbs.
Forelimbs of vertebrates.
KLB BK IV. PP 59-63
5 5
EVOLUTION
Comparative anatomy and homologous structures.
By the end of the lesson, the learner should be able to:
Define divergent evolution.
Give examples of homologous structures.
Examine forelimbs of vertebrates;
Discuss adaptations and use of the limbs.
Forelimbs of vertebrates.
KLB BK IV. PP 59-63
6 1-2
EVOLUTION
Comparative anatomy and homologous structures. (contd)
Convergent evolution and analogous structures.
Convergent evolution and analogous structures.(contd)
By the end of the lesson, the learner should be able to:
Define divergent evolution.
Give examples of homologous structures.
Define convergent evolution.
Give examples of analogous structures.
Give examples of vestigial structures.
Examine forelimbs of vertebrates;
Discuss adaptations and use of the limbs.
Examine wings of insects; wings of birds / bat.
Discuss observations.
Examine wings of insects; wings of birds / bat.
Discuss observations.
Forelimbs of vertebrates.
Wings of insects, wings of birds / bat.
KLB BK IV. PP 59-63
KLB BK IV. PP 63-64
6 3
EVOLUTION
Convergent evolution and analogous structures.(contd)
By the end of the lesson, the learner should be able to:
Define convergent evolution.
Give examples of analogous structures.
Give examples of vestigial structures.
Examine wings of insects; wings of birds / bat.
Discuss observations.
Wings of insects, wings of birds / bat.
KLB BK IV. PP 63-64
6 4
EVOLUTION
Larmack?s theory of evolution.
Darwin?s theory of natural selection.
By the end of the lesson, the learner should be able to:
Explain Larmack?s theory of evolution.
Explain Darwin?s theory of natural selection.
Cite examples of natural selection in action.
Expositions and explanations.
Expositions and explanations;
Probing questions;
Topic review.
text book
KLB BK IV. P 67
6 5
RECEPTION, RESPONSE & CO-ORDINATION
Meaning of stimulus, response and irritability. Tactic responses.
By the end of the lesson, the learner should be able to:




Define of stimulus, response and irritability.
Explain the need for sensitivity and response.
Identify types of tactics responses.




Brain storming;
Exposition;
Group experiments-chemotaxis in termites;
Discussion.




Brad crumbs, termites, dry sand, moth balls.




KLB BK IV. PP 73-74
7 1-2
RECEPTION, RESPONSE & CO-ORDINATION
Tropism and types of tropism.
By the end of the lesson, the learner should be able to:
Identify types of tropism.
State differences between tropisms and taxes.
Examine previous plant set ?ups on response to light, gravity;
Probing questions and discussion.
Seedlings, klinostat, corked beaker.
KLB BK IV. PP 74-78
7 3
RECEPTION, RESPONSE & CO-ORDINATION
Nastic responses.
By the end of the lesson, the learner should be able to:
Identify types of nastic responses
Q/A and discussion.
text book
KLB BK IV. PP 78-80
7 4
RECEPTION, RESPONSE & CO-ORDINATION
Role of auxins in tropisms.
By the end of the lesson, the learner should be able to:
Explain the role of auxins in tropisms.
Examine previous plant set ?ups on response to light, gravity; contact;
Probing questions and discussion.
text book
KLB BK IV. PP 80-83
7 5
RECEPTION, RESPONSE & CO-ORDINATION
Role of auxins in tropisms.
By the end of the lesson, the learner should be able to:
Explain the role of auxins in tropisms.
Examine previous plant set ?ups on response to light, gravity; contact;
Probing questions and discussion.
text book
KLB BK IV. PP 80-83
8 1-2
RECEPTION, RESPONSE & CO-ORDINATION
Response and Co-ordination in animals. The nervous system.
Types of neurons. The brain.
By the end of the lesson, the learner should be able to:




State components of the nervous system.
Describe the structure of nerve cells.
Identify types of neurons.

Describe structure of the human brain.




Descriptive and expository approaches.




Illustrative diagrams.
KLB BK IV. PP 84-85
KLB BK IV. PP 85-88
8 3
RECEPTION, RESPONSE & CO-ORDINATION
Reflex actions.
By the end of the lesson, the learner should be able to:
Differentiate between simple and conditioned reflex actions.
Illustrate a simple reflex arc.
Probing questions on differences between simple and conditioned reflex actions.
Illustrative diagrams.
KLB BK IV. PP 88-90
8 4
RECEPTION, RESPONSE & CO-ORDINATION
Transmission of a nerve impulse.
By the end of the lesson, the learner should be able to:
Describe the transmission of a nerve impulse.
Descriptive and expository approaches.
Illustrative diagrams.
KLB BK IV. PP 90-93
8 5
RECEPTION, RESPONSE & CO-ORDINATION
The endocrine system.
By the end of the lesson, the learner should be able to:
Identify components of endocrine system.
Compare endocrine system. With nervous system.
Discussion; tabulate the differences.
Illustrative diagrams.
KLB BK IV. PP 93-6
9 1-2
RECEPTION, RESPONSE & CO-ORDINATION
The mammalian eye.
By the end of the lesson, the learner should be able to:
Identify major parts of the human eye.
Explain image formation and interpretation in the eye.
Brain storming;
Discussion with probing questions.
Chart- the human eye.
KLB BK IV. PP 93-100
9 3
RECEPTION, RESPONSE & CO-ORDINATION
Accommodation of the eye.
By the end of the lesson, the learner should be able to:
Explain the role of ciliary muscles in accommodation of the eye.
Discussion with probing questions,
Drawing illustrative diagrams.
Chart- focusing far and near points.
KLB BK IV. PP 100-1
9 4
RECEPTION, RESPONSE & CO-ORDINATION
Defects of vision and their correction.
By the end of the lesson, the learner should be able to:
Identify defects of vision.
Explain correction of vision defects.
Detailed discussion with probing questions;
Drawing illustrative diagrams.
Illustrative diagrams.
KLB BK IV. PP 101-4
9 5
RECEPTION, RESPONSE & CO-ORDINATION
The human ear.
By the end of the lesson, the learner should be able to:
Identify major parts of the human ear.

Descriptive and expository approaches.
Drawn diagrams.
Illustrative diagrams.
KLB BK IV. PP 104-5
10-12

END TERM TWO EXAMS

13 1-2
RECEPTION, RESPONSE & CO-ORDINATION
Hearing.
Body balance and posture.
Defects of the ear.
By the end of the lesson, the learner should be able to:
Explain how the ear perceives sound.
Explain how the ear maintains body balance and posture.
Identify some defects of the ear.
Descriptive and expository approaches.
Descriptive and expository approaches.
Illustrative diagrams.
text book
KLB BK IV. P 106
KLB BK IV.
P 108
13 3
SUPPORT & MOVEMENT IN PLANTS AND ANIMALS
Importance of support and movement in plants.
By the end of the lesson, the learner should be able to:





Explain the importance of support and movement in plants.





Brain storming;
Probing questions;
Discussion.
text book
KLB BK IV. PP 111-2
13 4
SUPPORT & MOVEMENT IN PLANTS AND ANIMALS
Arrangement of tissues in a monocotyledonous stem.
By the end of the lesson, the learner should be able to:
Draw and label a transverse section of a monocotyledonous stem.
Examine transverse section of a monocotyledonous stem.
Monocotyledo-nous stem, eg. tradescantia, microscope,
Razors.
KLB BK IV. PP111-2.
13 5
SUPPORT & MOVEMENT IN PLANTS AND ANIMALS
Arrangement of tissues in a dicotyledonous stem.
By the end of the lesson, the learner should be able to:
Draw and label a transverse section of a dicotyledonous stem.
Draw and label a transverse section of herbaceous and woody stems.

Examine transverse section of a dicotyledonous stem, herbaceous and woody stems.
Herbaceous stem, microscope, slides,
Razors.
KLB BK IV. PP 111-5
14 1-2
SUPPORT & MOVEMENT IN PLANTS AND ANIMALS
Stem tissues.
Wilting in plants.
By the end of the lesson, the learner should be able to:
Identify some stem tissues.
Explain the role of stem tissues.
Compare the rate of wilting of herbaceous and woody stems.
Account for difference in rate of water loss.
Drawing and labeling diagrams;
Discussion.
Uproot herbaceous and woody plants;
Observe tem for about 30 min;
Brief discussion.
Illustrative diagrams.
KLB BK IV. PP 113-5
KLB BK IV. P 116
14 3
SUPPORT & MOVEMENT IN PLANTS AND ANIMALS
The exoskeleton.
By the end of the lesson, the learner should be able to:
Describe the structure of the exoskeleton.
Examine movement of a live arthropod;
Observe muscles of the hind limb of a grasshopper;
Relate the observations to the function of the exoskeleton.
A live arthropod,
E.g. grasshopper, millipede.
KLB BK IV. PP 116-7
14 4
SUPPORT & MOVEMENT IN PLANTS AND ANIMALS
The endoskeleton.
By the end of the lesson, the learner should be able to:
Describe the structure of the endoskeleton.




Observe skeleton of a vertebrate;
Compare it with an exoskeleton.
Discuss the contrasting features.
The human skeleton.




KLB BK IV. PP 117-8
14 5
SUPPORT & MOVEMENT IN PLANTS AND ANIMALS
The endoskeleton.
By the end of the lesson, the learner should be able to:
Describe the structure of the endoskeleton.




Observe skeleton of a vertebrate;
Compare it with an exoskeleton.
Discuss the contrasting features.
The human skeleton.




KLB BK IV. PP 117-8

Your Name Comes Here


Download

Feedback